期刊文献+
共找到2,553篇文章
< 1 2 128 >
每页显示 20 50 100
基于蚁群优化算法的多无人机侦察打击任务仿真系统设计与实现
1
作者 张永晋 瞿崇晓 +2 位作者 范长军 褚进琦 刘硕 《现代电子技术》 北大核心 2025年第15期18-26,共9页
察打一体化无人机集群在现代战争中应用的潜力巨大,但其大规模部署和实战演练的过程复杂,且耗费大量资源。受蚁群觅食行为启发,文中设计并实现了一套基于蚁群优化算法的多无人机侦察打击任务仿真系统,旨在提供一个真实、灵活且直观易用... 察打一体化无人机集群在现代战争中应用的潜力巨大,但其大规模部署和实战演练的过程复杂,且耗费大量资源。受蚁群觅食行为启发,文中设计并实现了一套基于蚁群优化算法的多无人机侦察打击任务仿真系统,旨在提供一个真实、灵活且直观易用的基准平台,以支持多无人机协同任务的仿真和评估。首先,介绍蚁群优化算法的基本原理,并在此基础上设计无人机集群执行察打任务的仿真流程;接着,构建仿真系统的整体架构,研发相应的机群协同智能算法,以优化察打过程中的路径规划,并利用LÖVE 2D框架开发交互式仿真系统;最后,展示三种具有代表性场景下的模拟效果,并进行系统性定量分析。结果表明,该系统能够为用户提供便捷高效的察打任务仿真,助力不同场景下的作战策略评估与优化。 展开更多
关键词 优化算法 无人机集 侦察打击任务 路径规划 交互式仿真 协同智能
在线阅读 下载PDF
基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略研究
2
作者 肖义平 赵云峰 《电源学报》 北大核心 2025年第5期96-104,共9页
光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(ma... 光伏阵列在局部阴影条件下P-U曲线会出现多个峰值,传统的粒子群优化PSO(particle swarm optimization)算法无法快速精确地搜寻到最大功率点。针对这种情况,本文提出1种基于混沌映射和高斯扰动的改进粒子群优化算法最大功率点跟踪MPPT(maximum power point tracking)控制策略。首先引入混沌Sine映射构造1种非线性随机递增惯性权重,并在粒子群的“个体认知”部分引入高斯扰动,同时利用对数函数构造学习因子,形成基于混沌映射和高斯扰动的改进粒子群算法;通过对6种典型单峰、多峰函数的测试,证明该算法收敛速度更快,不易陷入局部最优;将算法应用于MPPT控制中,并进一步通过不同算法MPPT控制进行对比仿真研究。对比仿真结果表明:在均匀光照强度、局部静态遮荫和动态遮荫3种情况下,基于混沌映射和高斯扰动的改进粒子群优化算法MPPT控制策略均具有更快的收敛速度和更小的搜索振荡幅度,能准确地搜寻到最大功率点,具有更高的寻优精度,从而提高了MPPT系统的发电效率。 展开更多
关键词 局部遮荫 最大功率点跟踪 混沌映射 高斯扰动 改进粒子优化算法
在线阅读 下载PDF
融合概率地图法的改进蚁群优化算法无人水面船路径规划
3
作者 白响恩 刘迪 徐笑锋 《上海海事大学学报》 北大核心 2025年第2期1-8,共8页
针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probab... 针对传统蚁群优化(ant colony optimization,ACO)算法存在收敛速度慢、易陷入局部最优等缺陷,对传统ACO算法进行改进,使其适用于无人水面船(unmanned surface vehicle,USV)在复杂和真实海域环境下的全局路径规划。利用概率地图法(probabilistic roadmap method,PRM)规划的路径作为ACO算法初始信息素分布的依据,提高算法收敛速度;设计同时考虑路径长度和方向性的启发函数,避免传统ACO算法陷入局部最优;加入转角启发函数,减少传统ACO算法拐点数;引入障碍物密度启发函数,提高传统ACO算法规划路径时感知障碍物的能力;利用三次B样条曲线对规划的路径进一步优化,提高路径的平滑性。仿真实验表明:在不同规模的栅格地图上和真实海域环境下,改进ACO算法在拐点数和迭代次数上具有明显优势,且稳定性较好。所提出的改进ACO算法在航海实际应用中具有重要意义。 展开更多
关键词 无人水面船(USV) 路径规划 优化(ACO)算法 概率地图法 真实海域
在线阅读 下载PDF
基于改进混沌蚁群算法的多机冲突解脱仿真研究 被引量:3
4
作者 童亮 杨婕 +3 位作者 甘旭升 沈堤 杨文达 陈达雄 《系统仿真学报》 北大核心 2025年第1期155-166,共12页
针对战斗机在自由飞行过程中的多机冲突解脱问题,提出一种基于动态挥发因子的混沌蚁群算法。对战斗机空中多机冲突解脱问题进行数学建模,基于战斗机性能特点,分别建立了战斗机保护区模型、飞行冲突模型和解脱模型;对混沌蚁群算法进行改... 针对战斗机在自由飞行过程中的多机冲突解脱问题,提出一种基于动态挥发因子的混沌蚁群算法。对战斗机空中多机冲突解脱问题进行数学建模,基于战斗机性能特点,分别建立了战斗机保护区模型、飞行冲突模型和解脱模型;对混沌蚁群算法进行改进,采用Logistic映射和Henon映射分别优化蚁群算法中的信息素更新公式,同时将信息素挥发因子设置动态因子,以提高不同阶段的搜索效率。设置典型的2机、4机和6机飞行冲突场景,对算法的有效性进行了仿真验证,结果表明,优化后的算法可行,算法的各项性能指标均有所提升。 展开更多
关键词 混沌算法 算法 多机飞行冲突解 混沌映射 动态因子
在线阅读 下载PDF
基于优化蚁群算法的露天矿无人矿卡绕跨并行类三维路径规划 被引量:1
5
作者 高明宇 鲍久圣 +5 位作者 阴妍 胡德平 张可琨 朱晨钟 王茂森 王凯 《煤炭科学技术》 北大核心 2025年第S1期399-411,共13页
随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特... 随着我国矿山智能化建设的不断推进,运输环节无人化已发展成为智慧矿山系统的重要组成部分。露天矿装卸载区等场景通常为非结构化作业区域,地形环境复杂且存在较多障碍物,无人矿卡作为露天矿物料运输的主要工具,由于其体型、载重大等特性,在该场景下的路径规划具有较大难度。针对无人矿卡在路径规划时绕行过多导致行驶效率低、路径质量差的问题,提出了一种基于优化蚁群算法的“类三维”路径规划方法,并通过仿真和试验验证了算法的有效性。首先,设计了一种基于激光点云的类三维地图构建方法,对滤波和配准后的有效点云数据进行栅格化处理并计算栅格高度,得到了包含障碍物高度信息的类三维地图。其次,以无人矿卡为研究对象,设计了一种三维碰撞检测方法,可在横向和纵向上分别判断障碍物与车体的冲突关系,并根据矿卡结构特征与道路工况制定了一种绕跨并行通行策略,直接跨越对车辆无威胁的障碍物,可在保证安全性的前提下有效提高矿卡的通行效率。然后,优化蚁群算法的初始信息素分布,提高算法的目标导向性,在改进信息素更新策略中考虑最优最差路径,以提高路径搜索的性能和效率;引入自适应多步长移动方式,并设计了一种引入跨障评价的多目标启发函数,仿真结果发现:优化后的蚁群算法在较少和较多障碍物场景搜索到的路径长度分别缩短了16.53%、16.79%,且路径拐点的减少有效提高了路径质量,使得算法生成的路径更符合实际需求。最后,通过搭建多障碍物场景模拟露天矿非结构化区域开展实车模拟试验,结果表明:搭载优化蚁群算法的无人矿卡试验车能跨越部分障碍物,在较少障碍物场景中的通行效率提升20.53%,在较多障碍物场景中的通行效率提升31.62%,且未与障碍物发生刮蹭。因此,所提出的基于优化蚁群算法的绕跨并行类三维路径规划方法可有效缩短路径长度,提高搜索效率与路径质量,在保证安全性的前提下充分发挥无人矿卡宽体高底盘特性。研究结果为露天矿卡无人驾驶技术开发及应用提供了理论参考。 展开更多
关键词 露天矿 无人矿卡 路径规划 类三维地图 优化算法
在线阅读 下载PDF
基于蚁群优化算法引导深度Q网络的移动机器人路径规划算法
6
作者 李海亮 李宗刚 +1 位作者 宁小刚 杜亚江 《兵工学报》 北大核心 2025年第11期63-76,共14页
针对移动机器人深度Q网络(Deep Q-Network,DQN)路径规划算法在处理大规模复杂未知环境时收敛速度慢、规划路径差等问题,提出一种结合蚁群优化(Ant Colony Optimization,ACO)算法与DQN的路径规划(Ant Colony Optimization Guide DQN,ACOG... 针对移动机器人深度Q网络(Deep Q-Network,DQN)路径规划算法在处理大规模复杂未知环境时收敛速度慢、规划路径差等问题,提出一种结合蚁群优化(Ant Colony Optimization,ACO)算法与DQN的路径规划(Ant Colony Optimization Guide DQN,ACOG-DQN)算法。引入ACO的信息素机制,以有利于到达终点为目标对当前可能路径进行选择,在降低对环境无效探索次数的基础上确定最优路径;对先前路径选择经验利用阈值筛选,形成样本集对Q-network进行训练,利用Q-network确定当前环境下的移动机器人最优路径。以ACO和Q-network分别确定的最优路径以及随机探索确定的最优路径为候选,设计Q-network最优路径权重随时间增大的路径选择机制进行决策,遴选出当前动作,达到路径最终由Q-network完全决策的目标。3组不同复杂环境下的仿真与实体试验结果均表明,新的ACOG-DQN算法相对于DQN算法,在收敛速度、路径质量和算法稳定性方面表现出更优的性能,表明了新算法的有效性。 展开更多
关键词 移动机器人 路径规划 深度Q网络算法 优化算法 强化学习 算法优化
在线阅读 下载PDF
粒子群算法多目标优化下的超混沌人脸图像加密
7
作者 余锦伟 谢巍 +1 位作者 张浪文 余孝源 《控制理论与应用》 北大核心 2025年第5期875-884,共10页
本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参... 本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参数,并采用SHA-256算法生成混沌系统的初始值,迭代生成高敏感性的随机序列;其次,利用随机序列执行像素置乱、扩散和行列置乱操作,生成初始加密人脸图像;然后,将加密人脸图像视为PSO算法的个体,通过迭代更新个体的位置优化考虑多项指标的适应性函数;最后,确定混沌系统的最优参数,并得到最佳的加密人脸图像.实验结果表明,本文的方法在信息熵、像素相关系数、NPCR和UACI方面的表现都优于主流方法,这说明本文所提方法具有更高的安全性. 展开更多
关键词 混沌系统 粒子算法 图像加密 智能优化 人脸隐私保护
在线阅读 下载PDF
基于多群自适应协同粒子群优化算法的光储热泵系统研究
8
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
基于改进蚁群优化算法的输电线路智能选线研究
9
作者 谢枫 孟宪乔 +2 位作者 刘耀中 张家倩 都海波 《控制工程》 北大核心 2025年第7期1330-1335,共6页
为了提高输电线路选线的效率,降低输电线路的建设成本,提出了一种基于地理信息系统的改进蚁群优化算法。首先,对规划区域进行栅格化建模,阐述传统蚁群优化算法在输电线路选线中的应用原理;然后,针对传统蚁群优化算法易陷入局部最优和搜... 为了提高输电线路选线的效率,降低输电线路的建设成本,提出了一种基于地理信息系统的改进蚁群优化算法。首先,对规划区域进行栅格化建模,阐述传统蚁群优化算法在输电线路选线中的应用原理;然后,针对传统蚁群优化算法易陷入局部最优和搜索到的路径存在较多拐点的问题,提出了信息素浓度自适应更新机制和节点优化机制对其进行改进。实验以安徽省某区域为例进行输电线路选线。实验结果表明,与传统蚁群优化算法相比,改进蚁群优化算法的搜索效率更高,搜索到的路径具有更少的拐点,可以有效减少输电线路的建设成本。 展开更多
关键词 栅格模型 优化算法 节点优化 智能选线
在线阅读 下载PDF
基于遗传和蚁群交互算法的穴盘苗稀植移栽路径优化
10
作者 蔡继萌 王卫兵 +3 位作者 曲家灏 郭小龙 李国栋 吴潇雨 《华中农业大学学报》 北大核心 2025年第4期248-258,共11页
针对穴盘苗移栽到低密度穴盘路径规划效率低下问题,基于遗传算法和蚁群算法提出蚁群-遗传(ant colony-genetic optimization algorithm,ACGO)和遗传-蚁群(genetic-ant colony optimization algorithm,GACO)交互算法进行稀植移栽路径优... 针对穴盘苗移栽到低密度穴盘路径规划效率低下问题,基于遗传算法和蚁群算法提出蚁群-遗传(ant colony-genetic optimization algorithm,ACGO)和遗传-蚁群(genetic-ant colony optimization algorithm,GACO)交互算法进行稀植移栽路径优化。通过仿真试验,使用固定顺序法和其他5种算法计算从72-32、72-50、128-50、128-32孔穴盘的移栽路径长度,对比分析不同算法在优化路径长度和计算时间上的差异,并通过相对标准差评估算法的稳定性。结果显示,在72孔到32孔穴盘移栽中,对比固定顺序法,GACO算法的平均路径长度缩短59.3%,平均计算时间为5.15 s,相对标准差约为1.5%;ACGO算法的平均路径长度缩短19.2%,平均计算时间为13.50 s,相对标准差约为1%。进一步研究显示,ACGO算法在200孔移栽至72孔和105孔场景的优化效果弱于贪婪算法,而GACO算法在不同孔数组合和缺苗数下展现出更高的普适性和稳定性。研究表明,ACGO和GACO 2种交互算法均可提升原算法的性能,但GACO算法在处理复杂稀植移栽路径规划问题时表现更为优越。 展开更多
关键词 穴盘苗 稀植移栽 路径优化 交互算法 遗传-算法
在线阅读 下载PDF
改进蚁群算法的经编机舌针机构优化设计
11
作者 王栋 郗欣甫 +1 位作者 葛晓逸 孙以泽 《机械设计与制造》 北大核心 2025年第10期245-250,共6页
为提升双针床经编机舌针机构运动精度的可靠度,改善多连杆运动带来的累积误差,本研究建立运动精度误差以及位移可靠度模型。对双针床经编机舌针机构进行建模并分析多连杆运动情况,建立舌针连杆机构优化模型。为防止陷入局部最优,采用改... 为提升双针床经编机舌针机构运动精度的可靠度,改善多连杆运动带来的累积误差,本研究建立运动精度误差以及位移可靠度模型。对双针床经编机舌针机构进行建模并分析多连杆运动情况,建立舌针连杆机构优化模型。为防止陷入局部最优,采用改进蚁群算法对舌针机构各杆进行优化设计。优化后的舌针机构满足原先运动需求,且在相同误差情况下位移可靠度有所提升,在x和y方向可靠度整体提升了4.3%和2.14%。此研究可有效解决多连杆运动中的累积误差导致的运动精度问题,具有实际参考价值。 展开更多
关键词 双针床经编机 舌针 改进算法 优化设计
在线阅读 下载PDF
基于蛇优化蚁群算法的装载机多机作业调度方法
12
作者 程雪聪 程茂林 张益鹏 《控制工程》 北大核心 2025年第10期1912-1920,共9页
为了求解无人驾驶电动装载机多机作业调度问题,提出了一种蛇优化蚁群算法。蛇优化蚁群算法在蚁群算法的基础上,利用蛇优化算法对蚁群算法中的核心参数进行优化,并采用全局异步与精英策略相结合的信息素浓度更新方式来保证算法的运行效... 为了求解无人驾驶电动装载机多机作业调度问题,提出了一种蛇优化蚁群算法。蛇优化蚁群算法在蚁群算法的基础上,利用蛇优化算法对蚁群算法中的核心参数进行优化,并采用全局异步与精英策略相结合的信息素浓度更新方式来保证算法的运行效率。实验采用所罗门(Solomon)测试集中不同客户规模的算例,对蚁群算法、精英蚁群算法、粒子群优化蚁群算法和蛇优化蚁群算法进行对比分析,并将蛇优化蚁群算法应用在无人驾驶电动装载机多机作业调度的真实案例中。所罗门测试集的实验结果表明,针对C1型、R1型和RC1型算例,蛇优化蚁群算法的寻优能力高于其他算法,求解得到的调度方案能够降低总作业成本。真实案例的实验结果验证了蛇优化蚁群算法的有效性。 展开更多
关键词 无人驾驶电动装载机 路径规划 优化算法 算法
在线阅读 下载PDF
基于不均匀分配信息素及多目标优化的改进蚁群算法在无人船路径规划中的应用研究
13
作者 谢国兵 贺沩 +2 位作者 胡旺文 苏义鑫 石兵华 《中国舰船研究》 北大核心 2025年第1期115-124,共10页
[目的]针对无人船在复杂水域中路径规划难度大的问题,提出一种基于不均匀分配信息素及多目标优化的改进蚁群优化(ACO)算法。[方法]采用概率路线图法(PRM)得到一条初始路径,依据该路径和终点的方位信息指导ACO算法不均匀分配初始信息素,... [目的]针对无人船在复杂水域中路径规划难度大的问题,提出一种基于不均匀分配信息素及多目标优化的改进蚁群优化(ACO)算法。[方法]采用概率路线图法(PRM)得到一条初始路径,依据该路径和终点的方位信息指导ACO算法不均匀分配初始信息素,使得初始路径和终点附近的信息素浓度大,其他栅格的信息素浓度参照与两者的距离逐渐减少,改善蚂蚁在前期路径搜索盲目性大的问题,缩短计算时间;建立求解多目标路径规划问题的目标函数,通过设定权重来平衡安全指数、能耗和路径曲折度之间的关系,为不同的应用场景生成符合需求的多样化路径,并使信息素增量随路径的优劣进行自适应调整,以强化优质路径在整个蚁群中的影响;同时,设置启发式矩阵系数的自适应调整机制,引入与迭代次数相关的余弦调节因子,以提高ACO算法的寻优效率。对路径进行二次优化以获得全局最优路径,减少航行过程中的频繁转向和转弯幅度。最后,以黄石的“仙岛湖”和杭州的“千岛湖”两个真实湖泊为地图,通过实验将所提算法与其他传统的ACO算法、A^(*)算法和改进ACO算法进行路径规划效果的比较。[结果]结果显示,相比其他传统的ACO算法,所提算法规划的路径最短(减少61.71%),距离障碍物最远,路径曲折度最小,运行时间也得到改善。[结论]实验结果表明,所提算法可降低无人船的航行能耗,减少转弯次数与转弯幅度,提升路径的平滑性和安全性。 展开更多
关键词 无人船 运动规划 多目标优化 优化算法 不均匀分配信息素 概率路线图法
在线阅读 下载PDF
改进蚁群算法优化电动调节阀开度单神经元PID控制
14
作者 祁佳欣 胡绍林 +1 位作者 何红丽 张赛 《科学技术与工程》 北大核心 2025年第19期8135-8141,共7页
针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能... 针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能力,实现PID控制参数的在线整定,并采用改进的蚁群优化算法优化单神经元PID中的学习速率和神经元比例系数,有效克服了单神经元PID中的学习速率和神经元比例系数因经验设定而无法达到预期控制效果的不足。仿真对比结果显示,相比于传统PID、单神经元PID以及基于蚁群优化算法优化单神经元PID 3种控制方法,本文提出的控制方法超调量分别减少了10.2%、6.1%和1.8%,同时调节时间也相应缩短了0.22、0.07、0.03 s,并且表现出更强的自适应和抗干扰能力,能够使阀门开度控制更加稳定可靠。 展开更多
关键词 电动调节阀 阀门开度控制 单神经元PID 改进优化算法
在线阅读 下载PDF
基于加速多蚁群算法的三峡水电站短期优化调度
15
作者 杨柳 杨侃 杨哲 《人民长江》 北大核心 2025年第4期33-40,共8页
在三峡水电站短期优化调度中,提出一种全面提升算法搜索寻优能力的加速多蚁群算法(AMACA)模型:通过增加蚁群规模,将多蚁群分别安排到各机组,分工协作,形成时空耦合的二维搜索矩阵;采用加速搜索策略,加快逐代蚁群搜索开始时间,实现信息... 在三峡水电站短期优化调度中,提出一种全面提升算法搜索寻优能力的加速多蚁群算法(AMACA)模型:通过增加蚁群规模,将多蚁群分别安排到各机组,分工协作,形成时空耦合的二维搜索矩阵;采用加速搜索策略,加快逐代蚁群搜索开始时间,实现信息素的分区反馈调节,加强全局寻优能力;采用邻域搜索策略,通过最优解的小范围振荡,进一步提升水电站开停机和调度策略的可靠性;通过提前生成并嵌套稳定最优表,实现总负荷在机组间的优化分配。运行结果表明:相较于遗传算法、基本蚁群算法和扩展蚁群算法,改进的AMACA算法在运行水头为77.00,86.00 m和102.00 m三种条件下三峡水电站短期优化调度中,均可获得更好的电站调度运行策略,发电耗水量优化效果较为显著。各台机组负荷均在稳定运行区,可有效保障机组避开空蚀振动区运行,提升三峡水电站机组运行稳定性和短期优化调度方案的稳健性。 展开更多
关键词 短期优化调度 机组组合 加速多算法 正反馈强度调节 稳定最优表 三峡水电站
在线阅读 下载PDF
基于信息素矩阵优化蚁群算法求解城市建模的旅行商问题
16
作者 刘岱 张亚鸣 +1 位作者 王凯 崔海青 《计算机应用研究》 北大核心 2025年第6期1719-1726,共8页
针对城市建模中的旅行商问题,提出了一种结合信息素矩阵的随机平均、自适应扰动及动态比例重置为主的优化蚁群算法,从而优化城市建模素材获取过程中的路径搜索。该算法在每轮路径选择后,依据路径优劣进行整体性的局部信息素更新并通过2-... 针对城市建模中的旅行商问题,提出了一种结合信息素矩阵的随机平均、自适应扰动及动态比例重置为主的优化蚁群算法,从而优化城市建模素材获取过程中的路径搜索。该算法在每轮路径选择后,依据路径优劣进行整体性的局部信息素更新并通过2-opt优化加速收敛。先采用随机平均策略,在最优路径多次未更新时均值化随机节点信息素,避免局部最优;当多次随机平均策略无效时,引入自适应扰动策略,通过扰动信息素矩阵选择路径,减少局部最优风险;当最优路径质量下降一定比例时,采用动态比例重置策略加大信息素矩阵中高低值元素差异,进一步加速收敛。结果表明,所提算法有效提升了全局搜索能力,加快了收敛过程,能有效解决城市建模中的旅行商问题。 展开更多
关键词 算法 旅行商问题 组合优化 2-opt算法 城市三维建模
在线阅读 下载PDF
基于蚁群优化算法的电镀试验台分组式调度方法研究
17
作者 汪守斌 王超 《电镀与精饰》 北大核心 2025年第6期9-15,57,共8页
电镀试验台分组式调度涉及多个试验台同时进行不同的电镀任务,每个任务有其特定的加工要求和顺序。然而,在实际操作中,由于任务分配不合理和加工顺序未优化,导致试验台之间的资源冲突、等待时间增加。为提高电镀试验台的工作效率,研究... 电镀试验台分组式调度涉及多个试验台同时进行不同的电镀任务,每个任务有其特定的加工要求和顺序。然而,在实际操作中,由于任务分配不合理和加工顺序未优化,导致试验台之间的资源冲突、等待时间增加。为提高电镀试验台的工作效率,研究基于蚁群优化算法的电镀试验台分组式调度方法。通过基于图论的电镀试验任务分组模型,将电镀试验任务进行合理分组。利用基于蚁群优化算法的分组式调度模型,设计一个旨在实现电镀试验任务加工耗时最短化的目标函数。通过运用蚁群优化算法,求解出满足该目标函数条件的最优分组式电镀任务与仪器的加工顺序,从而实现对电镀试验台的高效分组式调度。实验结果显示:蚁群优化算法使用下,电镀试验台的仪器设备资源使用率与负载均衡度优于对比方法,能够有效优化电镀试验台资源分配效果。 展开更多
关键词 优化算法 电镀任务 试验台 分组式调度 图论方法 深度优先搜索算法
在线阅读 下载PDF
基于蚁群与多簇头成簇算法的无线传感网络路由优化
18
作者 蒋成 郭向坤 《传感技术学报》 北大核心 2025年第7期1298-1302,共5页
为了解决无线传感网络路由方案低效的问题,提出了基于蚁群算法与多簇头成簇算法的无线传感网络路由优化方法。采用K-Medoids聚类算法对网络节点进行分类,使用多簇头成簇算法对分类节点展开分簇,优选出适合进行无线传感网络数据传输的节... 为了解决无线传感网络路由方案低效的问题,提出了基于蚁群算法与多簇头成簇算法的无线传感网络路由优化方法。采用K-Medoids聚类算法对网络节点进行分类,使用多簇头成簇算法对分类节点展开分簇,优选出适合进行无线传感网络数据传输的节点,从而提高网络的传输效率和性能。基于优选的网络传输节点,建立一个无线传感网络的路由优化模型。采用蚁群算法对无线传感网络路由优化模型求解,实现对无线传感网络路由的优化。仿真分析结果表明,所提方法应用后,无线传感网络路由传输置信度高于475、丢包率低于0.12、误码率低于0.04、优化时延低于1.3 ms,可以完成快速、有效的无线传感网络路由优化。 展开更多
关键词 无线传感网络 路由优化 算法 多簇头成簇算法 K-Medoids聚类算法
在线阅读 下载PDF
基于工业互联网和蚁群优化算法的供应链风险动态识别方法
19
作者 程栋 张勇 邱琼 《兵工自动化》 北大核心 2025年第8期68-72,共5页
针对常规供应链风险动态识别方法导致识别正确率较低的问题,提出基于工业互联网和蚁群优化算法的供应链风险动态识别方法。根据供应链风险管理流程,利用工业互联网技术识别供应链风险因素,在风险因素基础上构建供应链风险指标体系;通过... 针对常规供应链风险动态识别方法导致识别正确率较低的问题,提出基于工业互联网和蚁群优化算法的供应链风险动态识别方法。根据供应链风险管理流程,利用工业互联网技术识别供应链风险因素,在风险因素基础上构建供应链风险指标体系;通过分析风险因子的根本特征,分析潜在风险因素,并利用蚁群优化算法计算各风险指标的权重值与损失函数,结合信息素模长,实现供应链风险动态识别。对比实验结果表明:将该方法应用于企业物资供应链风险动态识别中,可取得较高的识别正确率。 展开更多
关键词 工业互联网 优化算法 供应链 风险动态识别
在线阅读 下载PDF
基于蚁群算法的电动汽车快速充电站选址与容量确定优化方法
20
作者 王宏刚 陈常龙 于宙 《工程数学学报》 北大核心 2025年第1期188-198,共11页
随着人们对生态问题的日益关注和对化石燃料依赖性的减少,电动汽车作为可持续交通解决方案受到了广泛关注。电动汽车因其环保特性而备受青睐,然而其有限的能量存储能力限制了行驶距离,因此高效利用能源至关重要。为确保电动汽车能够及... 随着人们对生态问题的日益关注和对化石燃料依赖性的减少,电动汽车作为可持续交通解决方案受到了广泛关注。电动汽车因其环保特性而备受青睐,然而其有限的能量存储能力限制了行驶距离,因此高效利用能源至关重要。为确保电动汽车能够及时获得补充能量,提出了一种基于蚁群算法的快速充电站选址与容量确定优化方法。研究考虑了实时定价、使用时间、关键峰值定价以及峰值时间回扣等因素,旨在制定最优充电定价策略。基于此策略,运用蚁群优化算法对电动汽车流量和充电需求进行了深入分析。通过综合考虑建设成本、设备购置成本、维护费用以及用户的行驶成本,构建了一个快速充电站选址与容量确定的优化模型,并采用蚁群算法对该模型进行求解,从而得出最优的选址与容量配置。实验结果表明,所提出的基于蚁群算法的优化方法具有更好的综合性能,适用于实际应用场景。 展开更多
关键词 电动汽车 优化运行 算法 电动汽车充电站
在线阅读 下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部