期刊文献+
共找到226篇文章
< 1 2 12 >
每页显示 20 50 100
基于高斯混合模型的紧急控制策略适应性风险评估方法及其应用
1
作者 徐伟 戴玉臣 +2 位作者 薛峰 李威 严明辉 《电网技术》 北大核心 2025年第3期1147-1154,共8页
紧急控制是保证故障后电力系统稳定运行的重要环节,新型电力系统不确定性因素引起紧急控制策略失效的可能性大幅增加。为此,提出一种基于高斯混合模型的紧急控制策略适应性风险评估与优化方法。首先,分析不同紧急控制决策框架下策略适... 紧急控制是保证故障后电力系统稳定运行的重要环节,新型电力系统不确定性因素引起紧急控制策略失效的可能性大幅增加。为此,提出一种基于高斯混合模型的紧急控制策略适应性风险评估与优化方法。首先,分析不同紧急控制决策框架下策略适应性风险的来源,提出紧急控制策略适应性风险评价指标。然后,采用越限量与控制效果描述新型电力系统各类不确定性因素对紧急控制策略适应性的影响,构建越限量与控制效果的高斯混合模型,评估紧急控制策略的适应性风险,在此基础上构建计及策略适应性风险的紧急控制决策模型。最后,实际电网的应用案例表明,该文所提风险评估方法准确有效,计及策略适应性风险的决策方法可降低电网运行方式快速变化带来的紧急控制偏差过大的风险,提高安控系统的可靠性。 展开更多
关键词 紧急控制 策略适应 不确定性分析 风险决策 高斯混合模型
在线阅读 下载PDF
基于自适应高斯混合模型与ResDN的火焰检测算法
2
作者 王文标 时启衡 郝友维 《科学技术与工程》 北大核心 2025年第4期1580-1586,共7页
针对火焰检测算法在复杂场景下误检率高、算法适应性差、效率低等问题,设计一种轻量高效的两阶段视频火焰检测算法。第一阶段采用改进的自适应高斯混合模型(adaptive gaussian mixture model, AGMM)对视频图像序列进行快速背景建模,利... 针对火焰检测算法在复杂场景下误检率高、算法适应性差、效率低等问题,设计一种轻量高效的两阶段视频火焰检测算法。第一阶段采用改进的自适应高斯混合模型(adaptive gaussian mixture model, AGMM)对视频图像序列进行快速背景建模,利用火焰的闪烁和涌动特性,提取出序列中的可疑候选区域。第二阶段使用残差深度归一化卷积神经网络(residual deep normalization and convolutional neural network, ResDN)对可疑候选区域进行判别,并引入简化的残差块替换原有的卷积层进行轻量化设计,实现对火焰的检测与定位。相比于传统分类算法,所设计的两阶段视频火焰检测算法能够有效克服复杂场景下的环境干扰,准确快速地识别火焰,具有更高的检测率和适应性。 展开更多
关键词 火焰检测 自适应高斯混合模型(AGMM) 残差深度归一化卷积神经网络(ResDN) 机器视觉 深度学习
在线阅读 下载PDF
基于自适应混合高斯模型的时空背景建模 被引量:79
3
作者 王永忠 梁彦 +2 位作者 潘泉 程咏梅 赵春晖 《自动化学报》 EI CSCD 北大核心 2009年第4期371-378,共8页
提出了一种基于自适应混合高斯模型的时空背景建模方法,有效地融合了像素在时空域上的分布信息,改善了传统的混合高斯背景建模方法对非平稳场景较为敏感的缺点.首先利用混合高斯模型学习每个像素在时间域上的分布,构造了基于像素的时间... 提出了一种基于自适应混合高斯模型的时空背景建模方法,有效地融合了像素在时空域上的分布信息,改善了传统的混合高斯背景建模方法对非平稳场景较为敏感的缺点.首先利用混合高斯模型学习每个像素在时间域上的分布,构造了基于像素的时间域背景模型,在在此基础上,通过非参数密度估计方法统计每个像素邻域内表示背景的高斯成分在空间上的分布,构造了基于像素的空间域背景模型;在决策层融合了基于时空背景模型的背景减除结果.为了提高本文时空背景建模的效率,提出一种新的混合高斯模型高斯成分个数的自适应选择策略,并利用积分图实现了空间域背景模型的快速计算.通过在不同的场景下与多个背景建模方法比较,实验结果验证了本文算法的有效性. 展开更多
关键词 时空背景模型 信息融合 混合高斯模型 非参数密度估计
在线阅读 下载PDF
自适应混合高斯背景模型的运动目标检测方法 被引量:46
4
作者 黄鑫娟 周洁敏 刘伯扬 《计算机应用》 CSCD 北大核心 2010年第1期71-74,共4页
提出了一种静止摄像机条件下自适应的运动目标检测方法。该方法基于同一像素点被同一灰度车辆覆盖几率小的假设构建初始背景,为每个像素点在线选择高斯分布个数。根据像素点与其邻域像素间存在联系的思想,在线更新学习率。最后用背景差... 提出了一种静止摄像机条件下自适应的运动目标检测方法。该方法基于同一像素点被同一灰度车辆覆盖几率小的假设构建初始背景,为每个像素点在线选择高斯分布个数。根据像素点与其邻域像素间存在联系的思想,在线更新学习率。最后用背景差分法检测出运动目标。实验结果表明,同基于传统混合高斯模型的运动目标检测方法相比,该方法有较好的自适应性,能快速适应场景的变化。 展开更多
关键词 混合高斯模型 背景更新 背景差分 目标检测 噪声去除
在线阅读 下载PDF
改进的混合高斯自适应背景模型 被引量:15
5
作者 朱齐丹 李科 +1 位作者 张智 蔡成涛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第10期1348-1353,1392,共7页
混合高斯背景模型是背景建模领域最常用的构建算法,针对该方法在实际应用中的缺陷,提出了2点改进措施:像素过滤方法和按背景演变过程进行划分的自适应学习率方法.像素过滤方法记录某点像素值在一个短时间段内的变化情况,对其进行统计分... 混合高斯背景模型是背景建模领域最常用的构建算法,针对该方法在实际应用中的缺陷,提出了2点改进措施:像素过滤方法和按背景演变过程进行划分的自适应学习率方法.像素过滤方法记录某点像素值在一个短时间段内的变化情况,对其进行统计分析,根据均值和方差过滤掉快速运动目标的动态干扰像素,增强算法的鲁棒性;新的自适应学习率方法将背景的形成过程划分为4个阶段,对不同的阶段使用不同的学习率,加速背景的形成和消退.应用改进后的算法在两段街道监控视频中同原算法进行了对比实验.实验结果表明,改进方法在视觉效果上有着显著提高,背景形成迅速、清晰.改进方法增强了算法的抗干扰能力,提高了背景的形成和切换速度,可以作为基础算法应用于相关视觉处理之中. 展开更多
关键词 混合高斯模型 背景建模 像素过滤 自适应学习率
在线阅读 下载PDF
复杂条件下高斯混合模型的自适应背景更新 被引量:15
6
作者 李明之 马志强 +1 位作者 单勇 张晓燕 《计算机应用》 CSCD 北大核心 2011年第7期1831-1834,共4页
针对高斯混合模型背景更新中面临的光照突变和目标与背景相互转化的问题,提出一种分情况分区域的背景自适应更新算法。首先根据当前检测目标的面积大小判别是否发生光照突变情况,采取针对性更新策略,对于未发生光照突变情况再分背景区... 针对高斯混合模型背景更新中面临的光照突变和目标与背景相互转化的问题,提出一种分情况分区域的背景自适应更新算法。首先根据当前检测目标的面积大小判别是否发生光照突变情况,采取针对性更新策略,对于未发生光照突变情况再分背景区域和目标区域分别进行背景自适应更新。其中,重点讨论了目标区域的背景更新问题,提出根据目标尺寸、运动速度和匹配次数等特征参数来调整目标区域的背景更新速率。仿真结果表明,该算法在保证了目标检测完整性的同时,提高了模型对背景变化的适应能力。 展开更多
关键词 高斯混合模型 背景更新 运动目标检测
在线阅读 下载PDF
高斯混合背景模型的适应能力研究 被引量:6
7
作者 张运楚 宋世军 +1 位作者 张汝敏 郝建林 《计算机应用》 CSCD 北大核心 2011年第3期706-710,共5页
高斯混合背景模型是一种参数化统计模型,观察时间窗内像素样本模式呈现规律决定了背景模型的学习结果。针对背景动态变化的特点,研究了影响背景模型适应能力的模态稳定性与可塑性、模态残留与激活问题。仿真实验表明高斯混合背景模型具... 高斯混合背景模型是一种参数化统计模型,观察时间窗内像素样本模式呈现规律决定了背景模型的学习结果。针对背景动态变化的特点,研究了影响背景模型适应能力的模态稳定性与可塑性、模态残留与激活问题。仿真实验表明高斯混合背景模型具有较强的渐变选择性适应能力,而模态残留与激活机制为模型提供了有限的背景结构短时变化适应能力。 展开更多
关键词 高斯混合背景模型 运动分割 适应能力 模态残留
在线阅读 下载PDF
自适应混合高斯背景模型的改进 被引量:21
8
作者 李全民 张运楚 《计算机应用》 CSCD 北大核心 2007年第8期2014-2017,共4页
对自适应混合高斯背景模型进行了改进,将背景重构和前景消融时间控制机制整合到传统自适应混合高斯背景模型中,以提高运动分割的质量。背景重构算法从含有运动物体的动态场景视频序列中重构静态背景图像,然后用重构的静态背景图像初始... 对自适应混合高斯背景模型进行了改进,将背景重构和前景消融时间控制机制整合到传统自适应混合高斯背景模型中,以提高运动分割的质量。背景重构算法从含有运动物体的动态场景视频序列中重构静态背景图像,然后用重构的静态背景图像初始化自适应混合高斯背景模型;而前景消融时间控制机制则使运动物体停止时的前景消融时间独立于背景模型的学习速率,从而可以根据需要调节前景消融的持续时间。实验结果表明了算法的有效性。 展开更多
关键词 视觉监控 运动分割 混合高斯背景模型 背景重构
在线阅读 下载PDF
一种改进的基于混合高斯分布模型的自适应背景消除算法 被引量:19
9
作者 王亮生 程荫杭 《北方交通大学学报》 CSCD 北大核心 2003年第6期22-25,共4页
视频检测技术是智能交通系统研究中一个重要研究方向,根据交通流视频检测的特点,对基于混合高斯分布模型的自适应背景消除方法进行了改进.包括:背景模型匹配只使用亮度信息;将高斯分布模型按权值、方差排序;使用单目深度信息来确定背景... 视频检测技术是智能交通系统研究中一个重要研究方向,根据交通流视频检测的特点,对基于混合高斯分布模型的自适应背景消除方法进行了改进.包括:背景模型匹配只使用亮度信息;将高斯分布模型按权值、方差排序;使用单目深度信息来确定背景;动态调整采样频度等.实验表明,本文提出的算法,分割效果较佳,分割的实时性大大增强. 展开更多
关键词 图像处理 混合高斯分布模型 背景消除 视频检测
在线阅读 下载PDF
基于YCbCr的自适应混合高斯模型背景建模 被引量:7
10
作者 黄玉 殷苌茗 周书仁 《计算机工程与科学》 CSCD 北大核心 2015年第1期152-156,共5页
混合高斯模型是最常用的背景建模方法之一,但是它的精确度是以耗时为代价的,且它在RGB颜色空间进行背景建模时,对噪声的处理效果一般。因此,对混合高斯模型进行改进,提出了一种基于YCbCr的自适应混合高斯模型背景建模方法。首先,将建模... 混合高斯模型是最常用的背景建模方法之一,但是它的精确度是以耗时为代价的,且它在RGB颜色空间进行背景建模时,对噪声的处理效果一般。因此,对混合高斯模型进行改进,提出了一种基于YCbCr的自适应混合高斯模型背景建模方法。首先,将建模颜色空间从RGB转换到YCbCr;然后,采用自适应选择策略来确定混合高斯模型的高斯成分个数;最后,将高斯成分按照关键字的值进行排序,以确定背景模型。将提出的建模方法应用于运动目标检测,实验结果表明,提出的方法与混合高斯模型背景建模相比,运动目标检测的检测结果更准确,耗时更少。 展开更多
关键词 背景建模 混合高斯模型 YCBCR颜色空间 自适应选择策略
在线阅读 下载PDF
基于改进混合高斯模型的自适应运动车辆检测算法 被引量:5
11
作者 张虎 方华 李春贵 《计算机应用与软件》 CSCD 北大核心 2014年第1期286-289,共4页
道路视频监控中经常存在车辆缓慢运动或短暂停留的情况。针对传统混合高斯模型背景减除法对环境突变敏感和对缓慢运动目标丢失信息的问题,提出一种改进的自适应车辆检测方法。首先,在参数更新前对像素值分类并根据分类结果设置模型更新... 道路视频监控中经常存在车辆缓慢运动或短暂停留的情况。针对传统混合高斯模型背景减除法对环境突变敏感和对缓慢运动目标丢失信息的问题,提出一种改进的自适应车辆检测方法。首先,在参数更新前对像素值分类并根据分类结果设置模型更新率,抑制缓慢运动前景被训练成背景;引入一个跟踪环境变化的度量因子,当环境突变时实现背景减除和帧差法的自适应切换,滤除环境变化的干扰;最后通过生态学滤波得到准确的运动目标。实验表明,该算法对白天实时路况视频中的运动车辆具有较好的检测效果。 展开更多
关键词 自适应混合高斯模型背景减除 目标检测
在线阅读 下载PDF
基于混合高斯模型融合背景减差的猪只运动跟踪 被引量:3
12
作者 王海涛 侯静静 《浙江农业科学》 2020年第2期329-332,共4页
由于猪是非刚性目标且猪场情况复杂多变,利用混合高斯模型自适应背景建模强的特点,对猪进行目标提取与跟踪。由于猪目标会长时间静止,导致融入背景后无法检测,本研究采用背景减差法在一定程度上予以补偿,使静止的猪目标不会跟踪丢失,之... 由于猪是非刚性目标且猪场情况复杂多变,利用混合高斯模型自适应背景建模强的特点,对猪进行目标提取与跟踪。由于猪目标会长时间静止,导致融入背景后无法检测,本研究采用背景减差法在一定程度上予以补偿,使静止的猪目标不会跟踪丢失,之后在HSV颜色空间下,利用其对光照不敏感的特点对检测出的猪目标进行阴影消除,以提高跟踪精度。最后,在猪耳设定颜色标记并利用满水填充法,解决多个猪目标交错及相互靠近后分离运动时产生的跟踪错误和丢失跟踪目标的问题。经对比经典Cam-Shift跟踪算法,本方法跟踪效果良好,精度较高,为生猪健康研究提供了重要依据。 展开更多
关键词 混合高斯模型 背景差法 滤波 阴影消除 漫水填充 目标跟踪
在线阅读 下载PDF
基于改进的混合高斯背景模型的运动目标检测 被引量:18
13
作者 宋雪桦 陈瑜 +1 位作者 耿剑锋 陈景柱 《计算机工程与设计》 CSCD 北大核心 2010年第21期4646-4649,共4页
混合高斯模型在应对背景中存在扰动的情况具有优势,而其不足之处主要表现在对光线变化比较敏感和当场景中前景与背景之间发生转换时容易产生较长时间的虚影。针对上述问题,提出一种融合相邻帧差法和背景减法的算法。采用了循环周期和动... 混合高斯模型在应对背景中存在扰动的情况具有优势,而其不足之处主要表现在对光线变化比较敏感和当场景中前景与背景之间发生转换时容易产生较长时间的虚影。针对上述问题,提出一种融合相邻帧差法和背景减法的算法。采用了循环周期和动态更新相结合的背景重建机制,通过运用Matlab对视频图像某个像素点的S值和V值的变化情况分析来体现背景更新和重建的过程,并对背景变化前后分别采用传统算法和改进算法进行对比分析。该改进算法解决了背景模型对光线变化敏感以及容易产生虚影等问题,实验结果表明了算法的有效性和鲁棒性。 展开更多
关键词 背景建模 混合高斯模型 背景更新 运动目标检测 虚影
在线阅读 下载PDF
HSV自适应混合高斯模型的运动目标检测 被引量:31
14
作者 林庆 徐柱 +1 位作者 王士同 詹永照 《计算机科学》 CSCD 北大核心 2010年第10期254-256,290,共4页
在目前的计算机视觉应用中,从视频序列中提取出运动目标是一个研究热点。针对传统方法在复杂多变环境下不能很好地检测出运动目标且运算量较大的问题,根据HSV颜色空间的特点,提出了一种基于HSV颜色空间的自适应混合高斯背景建模和阴影... 在目前的计算机视觉应用中,从视频序列中提取出运动目标是一个研究热点。针对传统方法在复杂多变环境下不能很好地检测出运动目标且运算量较大的问题,根据HSV颜色空间的特点,提出了一种基于HSV颜色空间的自适应混合高斯背景建模和阴影消除的方法。首先,在传统的混合高斯背景建模的基础上,引入了一种新的混合高斯模型高斯成分个数的自适应选择策略以提高建模的效率。其次,根据阴影在HSV向量空间的特点,融入了一种新的阴影消除方法,以检测出带阴影的运动目标。该方法能够快速准确地建立背景模型,准确分割前景目标。与传统的阴影消除方法相比,该方法可以在不需要设置阈值的情况下,对运动目标的阴影进行很好的消除,有很好的鲁棒性和实用性。 展开更多
关键词 自适应混合高斯模型 运动目标检测 阴影消除 HSV
在线阅读 下载PDF
一种自适应调整K-r的混合高斯背景建模和目标检测算法 被引量:15
15
作者 韩明 刘教民 +1 位作者 孟军英 王震洲 《电子与信息学报》 EI CSCD 北大核心 2014年第8期2023-2027,共5页
针对非平稳背景下的复杂场景,该文提出一种自适应调整K-r的混合高斯背景建模和目标检测算法。该方法利用混合高斯模型(GMM)学习每个像素在时间域上的分布,构建自适应调整高斯分量K的方法,并针对不同情况,对描述像素的高斯分量数进行增... 针对非平稳背景下的复杂场景,该文提出一种自适应调整K-r的混合高斯背景建模和目标检测算法。该方法利用混合高斯模型(GMM)学习每个像素在时间域上的分布,构建自适应调整高斯分量K的方法,并针对不同情况,对描述像素的高斯分量数进行增加、删除或合并;在此基础上,模型参数更新式中引入了两个新的参数,能够根据实际情况自适应调整r值,使得背景建模和目标检测能够准确实时地随像素变化而变化,从而减少了运动目标信息的损失,提高了算法的鲁棒性和收敛性。实验表明,该算法在有诸多不确定因素的序列视频中能够迅速响应实际场景的变化,实现自适应背景建模和准确的目标检测。 展开更多
关键词 运动目标检测 背景建模 混合高斯模型(GMM) 自适应调整K-ρ
在线阅读 下载PDF
一种混合高斯背景模型下的像素分类运动目标检测方法 被引量:18
16
作者 高凯亮 覃团发 +1 位作者 陈跃波 常侃 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期195-200,共6页
运动目标检测在智能视频监控、人机交互、目标导航等诸多领域有着广泛应用.背景减法是运动目标检测中应用较广泛的一种方法.在该方法中,背景建模和阈值化分割是最重要的步骤,直接决定了检测效果的好坏.当目标本身变化比较大时,若利用传... 运动目标检测在智能视频监控、人机交互、目标导航等诸多领域有着广泛应用.背景减法是运动目标检测中应用较广泛的一种方法.在该方法中,背景建模和阈值化分割是最重要的步骤,直接决定了检测效果的好坏.当目标本身变化比较大时,若利用传统的基于全局阈值的分割法,分割效果并不理想.针对基于全局阈值分割差分图像存在的问题,本文提出了一种基于混合高斯背景模型的像素分类运动目标检测方法.该方法首先利用混合高斯模型对背景建模,克服了场景变化等因素带来的影响;其次,利用背景减法得到差分图像并对像素进行分类,最后对分类后的像素集分别进行阈值化分割,得到前景目标.实验结果表明,与传统的基于全局阈值的分割法相比,本文算法能够获得更好的检测效果和鲁棒性. 展开更多
关键词 背景差分 混合高斯模型 像素分类 运动目标检测
在线阅读 下载PDF
动态场景中的改进混合高斯背景模型 被引量:10
17
作者 何亮明 覃荣华 +1 位作者 巩思亮 王营冠 《计算机工程》 CAS CSCD 2012年第8期10-12,15,共4页
提出一种应用于运动目标检测的改进混合高斯背景模型。在背景模型更新过程中,通过调整阈值,降低单模态背景的误检率。在运动目标检测时,融合统计差分法和时域差分法,降低多模态背景像素的误检率。实验结果表明,改进模型能有效解决由复... 提出一种应用于运动目标检测的改进混合高斯背景模型。在背景模型更新过程中,通过调整阈值,降低单模态背景的误检率。在运动目标检测时,融合统计差分法和时域差分法,降低多模态背景像素的误检率。实验结果表明,改进模型能有效解决由复杂动态背景引起的误检问题,具有较好的检测性能。 展开更多
关键词 目标检测 混合高斯背景模型 多模态背景 参数估计 数据融合
在线阅读 下载PDF
自适应高斯混合模型球场检测算法及其在体育视频分析中的应用 被引量:18
18
作者 刘扬 黄庆明 +1 位作者 高文 叶齐祥 《计算机研究与发展》 EI CSCD 北大核心 2006年第7期1207-1215,共9页
球场检测在体育视频内容分析中有着重要作用.为了克服由于不同光照、不同相机、不同拍摄角度造成球场颜色的非均一性问题,提出了一种基于自适应高斯混合模型(adaptiveGaussianmixturemodel,GMM)的球场检测算法.该算法首先从视频中任意... 球场检测在体育视频内容分析中有着重要作用.为了克服由于不同光照、不同相机、不同拍摄角度造成球场颜色的非均一性问题,提出了一种基于自适应高斯混合模型(adaptiveGaussianmixturemodel,GMM)的球场检测算法.该算法首先从视频中任意抽取一些图像,并自动分析这些图像的主要颜色,从中找到主颜色的近似分布,然后,利用GMM拟合主要颜色分布.为提高模型的适应能力,在球场检测过程中,利用当前GMM球场检测结果和增量期望最大(incrementalexpectationmaximum,IEM)算法不断更新模型参数,从而得到更加准确的参数估计,并用于后续图像中球场和非球场像素进行分类.最后,根据球场区域在图像中的分布,对足球比赛场景进行分类.实验证明,提出的算法具有良好的性能. 展开更多
关键词 球场检测 自适应高斯混合模型 增量期望最大算法 足球视频 场景分类
在线阅读 下载PDF
自适应变步长高斯混合模型的工业烟尘目标分割方法 被引量:6
19
作者 刘辉 王亚楠 陈棕鑫 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第11期2441-2450,共10页
工业烟尘排放时的烟气黑度自动监测对提高环保质量和指导生产过程具有重要的应用价值,针对传统的高斯混合模型在进行背景建模时,参数是在固定帧值的基础上进行参数更新,导致烟尘检测不准确等问题,提出一种自适应变步长高斯混合模型的工... 工业烟尘排放时的烟气黑度自动监测对提高环保质量和指导生产过程具有重要的应用价值,针对传统的高斯混合模型在进行背景建模时,参数是在固定帧值的基础上进行参数更新,导致烟尘检测不准确等问题,提出一种自适应变步长高斯混合模型的工业烟尘图像分割方法.根据烟尘变化速度不均匀的特点,通过分析检测出烟尘与实际烟尘的检出率和检准率的和的最大值,计算熵值差变化率对应的最佳步长,得到熵值差变化率与最佳步长的模型.以熵值差变化率为依据,确定最佳步长,得到一个关于熵值差变化率与最佳步长的模型.以熵值差变化率为输入,以最佳步长为输出,在广义回归神经网络(GRNN)得到适用于本文工业烟尘图像分割的网络模型.最后,在多个场景的烟尘视频中进行分割实验,结果表明,本文中方法能够有效的分割出视频中烟尘区域,且具有一定的适用性. 展开更多
关键词 图像分割 目标检测 背景减除 背景建模 高斯混合模型 烟尘分割
在线阅读 下载PDF
基于混合高斯模型和三帧差法的背景建模 被引量:10
20
作者 李亚南 周勇 田瑞娟 《兵工自动化》 2015年第4期33-35,共3页
针对混合高斯模型存在的不足,提出一种改进的基于混合高斯模型的背景建模方法。为每一个背景像素建立多维混合高斯模型,融入三帧差分法实时判定背景区域和运动区域,为背景显露区中的像素点选择较大的更新频率,并通过实验进行验证分析。... 针对混合高斯模型存在的不足,提出一种改进的基于混合高斯模型的背景建模方法。为每一个背景像素建立多维混合高斯模型,融入三帧差分法实时判定背景区域和运动区域,为背景显露区中的像素点选择较大的更新频率,并通过实验进行验证分析。实验结果表明:该方法相比高斯背景建模具有更好的环境适应性和鲁棒性,能消除背景中的"鬼影",适用于实时的目标检测和跟踪。 展开更多
关键词 混合高斯模型 帧差 背景建模
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部