期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
随机配置网络研究进展 被引量:5
1
作者 张成龙 丁世飞 +1 位作者 郭丽丽 张健 《软件学报》 EI CSCD 北大核心 2024年第5期2379-2399,共21页
随机配置网络(stochastic configuration network,SCN)是一种新兴的增量式神经网络模型,与其他随机化神经网络方法不同,它能够通过监督机制进行隐含层节点参数配置,保证了模型的快速收敛性能.因其具有学习效率高、人为干预程度低和泛化... 随机配置网络(stochastic configuration network,SCN)是一种新兴的增量式神经网络模型,与其他随机化神经网络方法不同,它能够通过监督机制进行隐含层节点参数配置,保证了模型的快速收敛性能.因其具有学习效率高、人为干预程度低和泛化能力强等优点,自2017年提出以来,SCN吸引了大量国内外学者的研究兴趣,得到了快速的推广和发展.从SCN的基础理论、典型算法变体、应用领域以及未来研究方向等方面切入,全面地概述SCN研究进展.首先,从理论的角度分析SCN的算法原理、通用逼近性能及其优点;其次,重点研究深度SCN、二维SCN、鲁棒SCN、集成SCN、分布式并行SCN、正则化SCN等典型变体;随后介绍SCN在硬件实现、计算机视觉、医学数据分析、故障检测与诊断、系统建模预测等不同领域的应用进展;最后指出SCN在卷积神经网络架构、半监督学习、无监督学习、多视图学习、模糊神经网络、循环神经网络等研究方向的发展潜力. 展开更多
关键词 随机配置网络 神经网络 深度学习 随机化学习 研究进展
在线阅读 下载PDF
基于M-estimator函数的加权深度随机配置网络 被引量:2
2
作者 丁世飞 张成龙 +2 位作者 郭丽丽 张健 丁玲 《计算机学报》 EI CAS CSCD 北大核心 2023年第11期2476-2487,共12页
深度随机配置网络(Deep Stochastic Configuration Network,DSCN)是一种增量式随机化学习模型,具有人为干预程度低、学习效率高和泛化能力强等优点.但是,面向噪声数据回归与分析时,传统的DSCN易受到异常值影响,从而降低了模型的泛化性.... 深度随机配置网络(Deep Stochastic Configuration Network,DSCN)是一种增量式随机化学习模型,具有人为干预程度低、学习效率高和泛化能力强等优点.但是,面向噪声数据回归与分析时,传统的DSCN易受到异常值影响,从而降低了模型的泛化性.因此,为提高噪声数据回归的精度和鲁棒性,提出了基于M-estimator函数的加权深度随机配置网络(Weighted Deep Stochastic Configuration Networks,WDSCN).首先,选取Huber和Bisquare 2个常用的M-estimator函数计算样本权重,利用加权最小二乘法和L2正则化策略替代最小二乘来更新WDSCN输出权重,以降低异常值对WDSCN的负面影响;其次,为提高WDSCN模型表征能力,设计了一种随机配置稀疏自编码器(Stochastic Configuration Sparse Autoencoder,SC-SAE),SC-SAE基于DSCN其独有的监督机制随机分配输入参数,采用基于L1正则化的目标函数,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)计算SC-SAE输出权重;然后,为获取有效的特征表示,利用SC-SAE生成特征的随机性和多样性,采用多个SC-SAE进行特征学习并融合,用于WDSCN模型训练;最后,在真实数据集上的实验结果表明,WDSCN-Huber、WDSCN-Bisquare相比于DSCN、SCN以及RSC-KDE、RSC-Huber、RSC-IQR、RSCN-KDE、WBLS-KDE和RBLS-Huber等加权模型具有更高的泛化性能和回归精度. 展开更多
关键词 深度随机配置网络 异常数据 鲁棒性 回归 随机神经网络
在线阅读 下载PDF
遗忘因子随机配置网络驱动的自适应切换学习模型
3
作者 乔景慧 张岩 +1 位作者 陈宇曦 张开济 《电子测量与仪器学报》 CSCD 北大核心 2023年第8期71-83,共13页
随机配置网络(SCNs)具有通用逼近能力和快速建模特性,已成功应用于大数据分析。在SCN的基础上,块增量随机配置网络(BSC)使用块增量机制提高训练速度,但增加了模型结构的复杂程度。为了解决上述难题,提出遗忘因子随机配置网络(FSCN-Ⅰ和F... 随机配置网络(SCNs)具有通用逼近能力和快速建模特性,已成功应用于大数据分析。在SCN的基础上,块增量随机配置网络(BSC)使用块增量机制提高训练速度,但增加了模型结构的复杂程度。为了解决上述难题,提出遗忘因子随机配置网络(FSCN-Ⅰ和FSCN-Ⅱ)驱动的自适应切换学习模型(ASLM)。该模型利用正态分布配置隐含层节点的输入参数。FSCN-Ⅰ通过误差值和遗忘因子调整节点块的尺寸,提高训练速度。FSCN-Ⅱ引入节点移除机制降低模型结构的复杂程度。ASLM由FSCN-Ⅰ和FSCN-Ⅱ构成,两者根据自适应变化的边界随机切换以提高模型的训练速度,并在FSCN-Ⅰ的基础上降低模型结构的复杂程度。最后,通过基础数据集和工业实例,表明该方法的有效性。 展开更多
关键词 随机配置网络 遗忘因子 动态隐含层节点 自适应切换学习模型
在线阅读 下载PDF
考虑风电接入的电力系统暂态稳定自适应评估
4
作者 别芳玫 万靖 +2 位作者 李慧慧 陈睿 范玉宏 《电网与清洁能源》 北大核心 2025年第1期97-105,112,共10页
为了充分考虑风电出力接入对电力系统的影响,提出一种基于高斯混合模型(gaussian mixture model,GMM)和自适应深度随机配置网络(deep stochastic configuration network,DeepSCN)的暂态稳定评估(transient stability assessment,TSA)方... 为了充分考虑风电出力接入对电力系统的影响,提出一种基于高斯混合模型(gaussian mixture model,GMM)和自适应深度随机配置网络(deep stochastic configuration network,DeepSCN)的暂态稳定评估(transient stability assessment,TSA)方法。考虑影响风电出力的主要因素有风速和风向等,以风速、风向为变量构建GMM,并根据GMM对样本进行聚类,得到样本分别属于每个类别的概率;训练不同聚类中心下的自适应DeepSCN评估模型,根据样本属于不同类别的概率赋予样本输入不同评估模型后评估结果的权重,根据综合结果确定样本的稳定性,从而降低风电出力不确定性对评估精度的干扰,提高评估的准确率。在改进的IEEE39节点系统上进行测试,仿真结果表明,所提方法降低了风电出力不确定对TSA的影响,提高了评估的准确度,从而证明所提TSA方法具有较好的实用性。 展开更多
关键词 电力系统 风电并网 高斯混合模型 聚类 自适应深度随机配置网络 暂态稳定评估
在线阅读 下载PDF
基于功率谱密度与随机配置网络的低压串联电弧故障检测
5
作者 李金杰 邹国锋 +2 位作者 魏良玉 王玮 傅桂霞 《科学技术与工程》 北大核心 2023年第34期14587-14595,共9页
低压串联电弧电流为非平稳信号,故障特征区分度低且具有随机性,给电弧故障特征提取和准确检测带来困难,提出了基于功率谱密度与随机配置网络的低压串联电弧故障检测方法。首先,搭建了串联电弧故障发生平台,采集不同负载类型的电流数据,... 低压串联电弧电流为非平稳信号,故障特征区分度低且具有随机性,给电弧故障特征提取和准确检测带来困难,提出了基于功率谱密度与随机配置网络的低压串联电弧故障检测方法。首先,搭建了串联电弧故障发生平台,采集不同负载类型的电流数据,构建数据集。其次,采用功率谱密度对电流信号执行随机信号分析,实现对电流信号的定量化频域特征描述,增强故障电流与正常电流特征的区分度。然后,采用随机配置网络构建串联电弧故障检测模型,将功率谱密度特征用于随机配置网络的自适应训练学习,提升网络训练效率和模型故障检测能力。在本文构建的电流数据集上,串联电弧故障检测的平均准确率达到96.1567%,证明了方法的有效性。 展开更多
关键词 串联电弧检测 功率谱密度 随机配置网络 频域特征提取 自适应学习
在线阅读 下载PDF
轧机轧制力的改进训练策略深度神经网络预测
6
作者 于飞 于博 《机械设计与制造》 北大核心 2023年第1期96-100,共5页
为了提高双机架炉卷轧机的轧制力预测精度,提出了具有快速而高效训练策略的深度神经网络预测方法。介绍了双机架炉卷轧机的工作原理,分析了轧制力影响参数。在深度神经网络基础上,使用随机小批量的样本选取法,提高深度神经网络训练速度... 为了提高双机架炉卷轧机的轧制力预测精度,提出了具有快速而高效训练策略的深度神经网络预测方法。介绍了双机架炉卷轧机的工作原理,分析了轧制力影响参数。在深度神经网络基础上,使用随机小批量的样本选取法,提高深度神经网络训练速度;提出自适应矩估计梯度优化算法,用于解决传统训练方法陷入局部极值的问题,从而给出了改进训练策略的深度神经网络轧制力预测方法。经轧制实验验证,改进深度神经网络的训练时间为226.15s,而传统网络的训练时间为862.93s;改进网络的预测误差绝大部分控制在3%以内,而传统网络的预测误差绝大部分控制在5%以内。以上数据表明,改进深度神经网络的训练速度和预测精度均远优于传统深度神经网络。 展开更多
关键词 深度神经网络 轧制力预测 自适应矩估计梯度优化 随机小批量梯度下降法
在线阅读 下载PDF
基于SCN数据模型的SISO非线性自适应控制
7
作者 代伟 张政煊 +1 位作者 杨春雨 马小平 《自动化学报》 EI CAS CSCD 北大核心 2024年第10期2002-2012,共11页
针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),... 针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型,并采用增量学习方法与监督机制,对模型结构与模型参数进行同步更新优化,保证了数据驱动模型的无限逼近能力,解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题.进而利用直链部分与增强部分,分别设计了线性控制器及虚拟未建模动态补偿器,建立了基于SCN数据驱动模型的自适应控制新方法,分析了其稳定性与收敛性,通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比,实验结果表明了所提方法的有效性. 展开更多
关键词 自适应控制 随机配置网络 监督机制 未建模动态 数据驱动模型
在线阅读 下载PDF
基于MIWOA优化SCN的变压器故障诊断研究 被引量:6
8
作者 丰胜成 张宗瑞 +1 位作者 付华 韩猛 《电工电能新技术》 CSCD 北大核心 2024年第6期79-89,共11页
针对变压器故障诊断精确度低的问题,本文提出了一种多策略改进的鲸鱼优化算法(MIWOA)优化随机配置网络(SCN)的变压器故障诊断模型。首先,对变压器冗杂繁多的原始故障数据进行核主成分分析(KPCA)降维处理,降低无效特征的影响;其次,利用T... 针对变压器故障诊断精确度低的问题,本文提出了一种多策略改进的鲸鱼优化算法(MIWOA)优化随机配置网络(SCN)的变压器故障诊断模型。首先,对变压器冗杂繁多的原始故障数据进行核主成分分析(KPCA)降维处理,降低无效特征的影响;其次,利用Tent混沌映射、动态自适应权重和初级知识获取共享算法对鲸鱼算法(WOA)进行改进,提高其优化能力;然后,在SCN中引入L2范数惩罚项进行正则化处理,并使用改进后的MIWOA算法对SCN惩罚项系数C进行寻优求解,提高SCN分类精度和泛化能力;最后,将降维的数据输入到MIWOA-SCN故障诊断模型中,提高模型收敛速度。结果表明,本文所提出的模型诊断精度为93.1%,与WOA-SCN、GWO-SCN和PSO-SCN诊断模型相比,分别提高了6.89%、9.48%、14.65%,证明MIWOA-SCN诊断模型在变压器故障诊断上具有良好的诊断效果。 展开更多
关键词 变压器 鲸鱼优化算法 核主成分分析 动态自适应权重 初级知识获取共享算法 随机配置网络
在线阅读 下载PDF
基于VMD与AdaBoost-SCN的海缆振动信号识别方法 被引量:5
9
作者 尚秋峰 黄达 巩彪 《振动与冲击》 EI CSCD 北大核心 2023年第19期231-239,共9页
海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模... 海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模型对信号识别准确率不高的问题,提出了自适应增强(adaptive boosting,AdaBoost)算法优化的随机配置网络(AdaBoost-SCN)识别方法。首先用变分模态分解(variational mode decomposition,VMD)算法分解海缆振动信号,构建特征向量;然后采用AdaBoost-SCN算法对振动信号分类。结果表明,所提方法有着很高的精度,并且具有很强的鲁棒性与泛化能力,提高了布里渊光时域分析系统振动信号识别的有效性。 展开更多
关键词 信号识别 变分模态分解(VMD) 随机配置网络(SCN) 自适应增强(AdaBoost)算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部