期刊文献+
共找到3,570篇文章
< 1 2 179 >
每页显示 20 50 100
基于深度子领域适应卷积神经网络的结构损伤识别
1
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
2
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:2
3
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
融合卷积深度置信网络与可拓神经网络的齿轮故障诊断方法
4
作者 王体春 夏天 费叶琦 《计算机集成制造系统》 北大核心 2025年第6期2178-2193,共16页
针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入... 针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入软池化层优化的膨胀卷积深度置信网络进行特征提取,并采用注意力机制技术加权融合多通道特征;利用侧距优化的加权可拓神经网络完成齿轮故障分类。最后,通过公开数据集进行验证和对比分析表明,该模型相比卷积神经网络模型、深度置信网络模型、高斯卷积深度置信网络模型等具有更高的识别精度,在噪声干扰和变工况条件下具有良好的故障诊断性能。 展开更多
关键词 深度学习 卷积深度置信网络 可拓神经网络 故障诊断
在线阅读 下载PDF
基于卷积神经网络的图像分类深度学习模型综述 被引量:4
5
作者 刘鸿达 孙旭辉 +2 位作者 李沂滨 韩琳 张宇 《计算机工程与应用》 北大核心 2025年第11期1-21,共21页
使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主... 使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主流方法,主要介绍基于卷积神经网络的分类模型的发展历程,分析其不同阶段各个模型的搭建思路;介绍Transformer与卷积神经网络结合的相关模型以及各模型在其他领域的应用情况。最后,对卷积神经网络的发展进行了探讨。 展开更多
关键词 卷积神经网络 深度学习 图像分类 TRANSFORMER
在线阅读 下载PDF
基于车载成像与深度卷积神经网络的地表残膜识别方法 被引量:1
6
作者 吕继东 翟志强 +3 位作者 孟庆建 苗璐鹏 陈悦 张若宇 《农业机械学报》 北大核心 2025年第5期26-37,70,共13页
针对残膜回收机实际作业过程中存在多种相似非目标场景干扰,目标场景图像背景复杂且地表残膜尺寸小、破碎度大、无固定轮廓导致残膜覆盖率难以准确评估的问题,提出基于车载成像和深度卷积神经网络的地表残膜识别方法。构建了一种基于多... 针对残膜回收机实际作业过程中存在多种相似非目标场景干扰,目标场景图像背景复杂且地表残膜尺寸小、破碎度大、无固定轮廓导致残膜覆盖率难以准确评估的问题,提出基于车载成像和深度卷积神经网络的地表残膜识别方法。构建了一种基于多重特征增强的SE-DenseNet-DC分类模型,在DenseNet121模型每个稠密块的非线性组合函数前后引入通道注意力机制增强有效特征信息通道的权重,然后引入多尺度串联空洞卷积替换原始模型第1层卷积提升感受野并保持细节敏感度,实现目标场景图像的有效提取;构建了一种基于细节信息增强和多尺度特征融合的CDC-TransUnet分割模型,在TransUnet模型的编码器部分引入CBAM模块提取更加细微和精确的全局特征,在跳跃连接部分引入DAB模块融合多尺度语义信息并弥补编码和解码阶段特征之间的语义差距,然后在解码器部分引入CCAF模块减少上采样丢失的细节信息,实现目标场景图像复杂背景中地表残膜的精准分割。试验结果表明,SE-DenseNet-DC分类模型对目标场景图像的分类准确率、查准率、查全率和F1值分别达到96.26%、91.54%、94.49%和92.83%,CDC-TransUnet分割模型对目标场景图像中地表残膜分割平均交并比(MIOU)达到77.17%,模型预测残膜覆盖率与人工标注残膜覆盖率决定系数(R^(2))为0.92,均方根误差(RMSE)为0.23%,平均相对误差为2.95%,单幅图像评估时间平均为0.54 s。本文方法在残膜回收机回收后地表残膜覆盖率监测评估中具有较高的准确率和较快的推理速度,为残膜回收机回收质量实时准确评估提供技术支撑。 展开更多
关键词 棉田 残膜回收 车载成像 深度卷积神经网络 识别
在线阅读 下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
7
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
在线阅读 下载PDF
基于深度卷积神经网络的雷达伺服转台消隙策略
8
作者 鲍子威 吴影生 房景仕 《雷达科学与技术》 北大核心 2025年第1期101-108,118,共9页
精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐... 精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐渐变差,影响雷达跟踪精度。针对此缺陷,本文提出一种基于深度卷积神经网络(DCNN)的精密雷达伺服转台消隙策略,通过采集位置闭环传动轴振动数据,利用连续小波变换(CWT)得到时频图,作为DCNN训练输入,训练后得到识别模型,最后根据模型识别出伺服转台传动机构磨损程度来调整双电机消隙控制的偏置电流和拐点电流,通过对比实验验证了调整后消隙效果优于传统消隙方式,极大提高装备运行的可靠性,降低雷达伺服转台的维护成本。 展开更多
关键词 深度卷积神经网络 精密雷达伺服转台 双电机消隙 可靠性
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
9
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
10
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
11
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
基于深度卷积神经网络的产品无损分级检测方法
12
作者 孙雯 张龙青 《激光杂志》 北大核心 2025年第2期251-256,共6页
为实现自动化生产、优化产品分级,提高生产效率和产品质量控制水平,研究基于深度卷积神经网络的产品无损分级检测方法。依据激光吸收光谱技术原理,设计一种近红外激光吸收光谱采集装置,利用该装置采集待测产品的近红外激光吸收光谱;采用... 为实现自动化生产、优化产品分级,提高生产效率和产品质量控制水平,研究基于深度卷积神经网络的产品无损分级检测方法。依据激光吸收光谱技术原理,设计一种近红外激光吸收光谱采集装置,利用该装置采集待测产品的近红外激光吸收光谱;采用Savitzky-Golay方法对采集到的吸收光谱实施预处理,降低光谱之间的干扰,增强光谱的纯净度与灵敏度;构建包含4层隐含层的深度卷积神经网络模型,将交叉熵作为代价函数,对该网络模型实施反向传播训练,将经过预处理的待测产品近红外激光吸收光谱输入至训练好的深度卷积神经网络模型中,其输出的结果即待测产品的无损分级检测结果。实验表明,该方法可以有效实现产品的无损分级检测,针对不同类型的产品分级识别率可达97%以上,检测耗时最高为1.11 s,其检测效率更高。 展开更多
关键词 近红外激光 吸收光谱 吸光度 图像预处理 深度卷积神经网络 无损分级检测
在线阅读 下载PDF
基于多种深度卷积神经网络模型的汉族青少年儿童肘关节X线骨龄推断
13
作者 李丹阳 周慧明 +4 位作者 万雷 刘太昂 李远喆 汪茂文 王亚辉 《法医学杂志》 北大核心 2025年第1期48-58,共11页
目的探讨适用于我国汉族青少年儿童肘关节X线图像的深度学习骨龄自动推断模型,并评估其性能。方法采集我国华东、华南、华中、西北地区6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像943例(男性517例,女性426例),采用3种实验方案(... 目的探讨适用于我国汉族青少年儿童肘关节X线图像的深度学习骨龄自动推断模型,并评估其性能。方法采集我国华东、华南、华中、西北地区6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像943例(男性517例,女性426例),采用3种实验方案(方案一:将预处理后的上述图像直接输入回归模型;方案二:以“肘关节重点骨骼标注”作为标签训练分割网络,将分割后的图像输入回归模型;方案三:以“肘关节全部骨骼标注”作为标签训练分割网络,将分割后的图像输入回归模型)进行肘关节X线骨龄预测。针对分割任务,从U-Net、UNet++和TransUNet中遴选出最优网络模型作为分割网络;针对回归任务,选择VGG16、VGG19、InceptionV2、InceptionV3、ResNet34、ResNet50、ResNet101和DenseNet121模型进行骨龄预测。采用随机抽样的方法抽取80%样本(754例)作为训练集和验证集,用于模型拟合和超参数的调整;20%(189例)作为内部测试集,用于测试训练后模型性能。另采集104例同源6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像作为外部测试集。通过比较模型预测年龄与真实生活年龄之间的平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)、_(±0.7岁)的准确率(P_(±0.7岁))、_(±1.0岁)的准确率(P_(±1.0岁)),并绘制雷达图、散点图、热力图评估模型的性能。结果按照方案三的方法进行分割时,UNet++模型在学习率为0.0001时的分割损失为0.0004,准确率为93.8%,模型分割性能优异。在内部测试集中,DenseNet121模型采用该分割方法的模型预测结果最优,MAE、P_(±0.7岁)、P_(±1.0岁)分别为0.83岁、70.03%、84.30%。在外部测试集中,DenseNet121模型采用方案三的结果最优,平均MAE为0.89岁、平均RMSE为1.00岁。结论对青少年儿童肘关节X线图像进行骨龄自动推断时,分割网络推荐使用UNet++模型,DenseNet121模型在采用方案三时的性能最优。使用分割网络,特别是以包括肱骨远端、桡骨近端、尺骨近端全部肘关节作为标注区域的分割网络能提高肘关节X线骨龄推断的准确性。 展开更多
关键词 法医人类学 年龄推断 X线图像 肘关节 深度卷积神经网络 分割网络 青少年 儿童
在线阅读 下载PDF
基于卷积神经网络的立体匹配算法研究
14
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法
15
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于卷积神经网络的财务困境预测:公司财报的图像化 被引量:1
16
作者 赵琪 徐维军 +1 位作者 季昱丞 张卫国 《管理工程学报》 北大核心 2025年第1期46-62,共17页
本文提出了一个端到端的深度学习模型来预测中国上市公司的财务困境,通过将公司基本面数据图像化,探究了深度卷积神经网络(CNN)能否直接从图像化的原始财务数据中自动提取信息,以做出媲美甚至超过借助人类专家知识生成的财务困境预测。... 本文提出了一个端到端的深度学习模型来预测中国上市公司的财务困境,通过将公司基本面数据图像化,探究了深度卷积神经网络(CNN)能否直接从图像化的原始财务数据中自动提取信息,以做出媲美甚至超过借助人类专家知识生成的财务困境预测。将来自财务报表中的原始财务项目转化为彩色图像后,深度学习模型可以直接从对应公司的财务项目图像中得出对未来财务困境的准确预测,而无需人类专家事先根据会计专业知识挑选财务项并定义财务指标。实证结果表明,相比使用单一年份的财务数据(灰度图像),使用过去3年的财务数据(彩色图像)有助于提高深度学习模型的预测性能。此外,从原始数据中得出预测的深度学习模型能够达到与“人工选取财务指标+传统机器学习模型”相当的性能。进一步的研究表明,将本文提出的深度学习模型与传统机器学习模型结合起来,可以达到比二者单独使用时更准确的预测性能。 展开更多
关键词 深度学习 卷积神经网络 财务困境 财务指标
在线阅读 下载PDF
基于卷积神经网络的高层建筑智能控制算法研究 被引量:1
17
作者 刘康生 涂建维 +1 位作者 张家瑞 李召 《重庆大学学报》 北大核心 2025年第1期66-75,共10页
浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑... 浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比。结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能。 展开更多
关键词 深度学习 一维卷积神经网络 智能控制 数据特征可视化 泛化性能
在线阅读 下载PDF
基于2D-3D卷积神经网络的情绪识别模型
18
作者 杨朋辉 杨长青 +1 位作者 刘静 崔冬 《燕山大学学报》 北大核心 2025年第1期66-73,共8页
基于脑电信号的情绪识别是人机交互的重要部分,本文将二维卷积神经网络、三维卷积神经网络、深度可分离卷积进行结合,提出一种基于2D-3D卷积神经网络(2-3DCNN)模型,从时间、空间、频率三个方面进行特征提取。在网络中引入SE-ResNet网络... 基于脑电信号的情绪识别是人机交互的重要部分,本文将二维卷积神经网络、三维卷积神经网络、深度可分离卷积进行结合,提出一种基于2D-3D卷积神经网络(2-3DCNN)模型,从时间、空间、频率三个方面进行特征提取。在网络中引入SE-ResNet网络、深度残差收缩网络和Xception网络,挖掘脑电信号中更能显著反映情感变化的空间、时间和频率信息。本文在DEAP公共情感数据集上做性能测试,结果表明,2-3DCNN在唤醒度和效价的两个分类任务上的识别准确率分别达到了97.59%和97.21%,比目前最先进的模型分别高出2.36%和1.34%。 展开更多
关键词 情绪识别 脑电信号 卷积神经网络 深度残差收缩网络 深度可分离卷积
在线阅读 下载PDF
卷积神经网络在图像超分辨上的应用
19
作者 田春伟 宋明键 +3 位作者 左旺孟 杜博 张艳宁 张师超 《智能系统学报》 北大核心 2025年第3期719-749,共31页
卷积神经网络因强大的学习能力,已成为解决图像超分辨问题的主流方法。然而,用于解决图像超分辨的不同类型深度学习方法存在巨大的差异。目前,仅有少量文献能根据不同缩放方法来总结不同深度学习技术在图像超分辨上的区别和联系。因此,... 卷积神经网络因强大的学习能力,已成为解决图像超分辨问题的主流方法。然而,用于解决图像超分辨的不同类型深度学习方法存在巨大的差异。目前,仅有少量文献能根据不同缩放方法来总结不同深度学习技术在图像超分辨上的区别和联系。因此,根据设备的负载能力和执行速度等介绍面向图像超分辨方法的卷积神经网络尤为重要。本文首先介绍面向图像超分辨的卷积神经网络基础,随后通过介绍基于双三次插值、最近邻插值、双线性插值、转置卷积、亚像素层、元上采样的卷积神经网络的图像超分辨方法,分析基于插值和模块化的卷积神经网络图像超分辨方法的区别与联系,并通过实验比较这些方法的性能。本文对潜在的研究方向和挑战进行阐述并总结全文,旨在促进基于卷积神经网络的图像超分辨研究的发展。 展开更多
关键词 深度学习 卷积神经网络 图像重建 图像处理 图像复原 图像分辨率 神经网络 底层视觉
在线阅读 下载PDF
基于多序列MRI的2.5D卷积神经网络鉴别脑膜瘤的多中心研究
20
作者 郭开灿 刘婷 +5 位作者 刘高元 张勇 刘祥雏 鲁忠燕 周元林 李兵 《磁共振成像》 北大核心 2025年第2期20-28,共9页
目的探讨基于T2WI、DWI和T1增强序列的2.5D卷积神经网络(convolutional neural network,CNN)在脑膜瘤鉴别诊断中的价值。材料与方法在A、B、C三家医院回顾性收集手术病理证实的脑膜瘤及影像表现与之类似的非脑膜瘤病例共674例,在A医院... 目的探讨基于T2WI、DWI和T1增强序列的2.5D卷积神经网络(convolutional neural network,CNN)在脑膜瘤鉴别诊断中的价值。材料与方法在A、B、C三家医院回顾性收集手术病理证实的脑膜瘤及影像表现与之类似的非脑膜瘤病例共674例,在A医院收集的414例中脑膜瘤为178例,非脑膜瘤为236例,B医院的95例中脑膜瘤为41例,非脑膜瘤为54例,C医院收集的165例中脑膜瘤为78例,非脑膜瘤87例。将所有病例分为5类:孤立性纤维瘤/血管周细胞瘤(Class 0)、脑膜瘤(Class 1)、淋巴瘤(Class 2)、转移瘤(Class 3)、软骨来源及其他类似肿瘤(Class 4)。以A医院队列为训练集,以B医院队列为测试集、C医院队列为验证集,分别基于MRI征象和输入的MRI图像构建梯度决策树(Gradient Boosted Decision Trees,GBDT)模型和三种2.5D CNNs模型(ResNet50、DenseNet169、ResNext50_32x4d)中,在综合比较模型间的性能差异后筛选出最优模型。6位具有不同诊断工作经验的放射医师(初级、中级和高级职称医师各2名)对验证集病例进行独立诊断,评估最优模型与不同经验医师诊断结果的一致性。结果在4种多分类诊断模型中,ResNext50_32x4d模型被判定为最优模型,在训练集、测试集和验证集中的准确度分别为86.7%、82.1%、80.6%;6位具有不同诊断经验的放射医师(医师A~F)在测试集中的准确度分别为61.2%、66.3%、72.1%、77.9%、80.1%、83.2%,最优模型与2位高级职称放射医师的诊断结果具有较好的一致性,组内相关系数(intra-class correlation coefficient,ICC)分别为0.735、0.862。结论基于MRI多序列的2.5D CNN模型在脑膜瘤的鉴别诊断中具有良好的分类预测性能,可为诊断决策提供有价值的参考。 展开更多
关键词 脑膜瘤 磁共振成像 深度学习 卷积神经网络 鉴别诊断
在线阅读 下载PDF
上一页 1 2 179 下一页 到第
使用帮助 返回顶部