期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
一种自适应残差卷积自编码网络及其故障诊断应用
1
作者 潘天成 陈龙 +1 位作者 蒲春雷 陈志强 《机电工程》 北大核心 2025年第3期529-538,共10页
针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数... 针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数化修正线性单元(APReLU),建立了自适应残差模块(ARM),ARM可以对相似的输入特征进行自适应非线性变换,避免了特征的错误识别;其次,在CAE中嵌入多级ARM,构建了ARCAE,增加了CAE的深度,提取了更具鉴别性的深层次特征,同时有效防止了网络加深而造成的性能退化;最后,基于ARCAE建立了针对一维信号的故障诊断新方法,将其应用于无监督滚动轴承故障诊断中,并通过两个不同类型的实验,对上述方法的有效性进行了验证。研究结果表明:在恒定转速工况下,ARCAE的诊断准确率最高,平均准确率达到了97.05%,且标准差仅为0.007,远低于其他几种传统CAE网络;在变转速工况下,ARCAE模型诊断准确率仍然是最高的,平均准确率达到了93.25%,由此说明ARCAE具有较高的特征提取能力和分类准确率;此外,变转速工况下,由于转速变化导致不同状态的振动信号特征差异变大,诊断难度加大,但与其他几种传统CAE网络相比,ARCAE诊断准确率下降最少,仅为5.37%,说明ARCAE具有更强的鲁棒性和稳定性。 展开更多
关键词 滚动轴承 自适应残差卷积自编码网络 自适应参数化修正线性单元 自适应残差模块 无监督故障诊断 特征提取
在线阅读 下载PDF
基于并联残差膨胀卷积网络的短文本实体关系联合抽取
2
作者 曾伟 奚雪峰 崔志明 《现代电子技术》 北大核心 2025年第2期169-178,共10页
关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题... 关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题。为此,文中提出一种基于并联残差膨胀卷积网络的短文本实体关系联合抽取方法。该方法利用BERT生成语义特征信息,采用并联残差膨胀卷积网络来捕获语义信息,从而提升上下文信息的捕获能力并缓解噪声。联合抽取框架通过抽取潜在关系来过滤无关关系,然后再抽取实体以预测三元组,从而解决关系冗余和重叠问题,并提高计算效率。实验结果表明,与现有的主流模型相比,所提模型在三个公共数据集NYT、WebNLG和DuIE上的F1值分别为90.9%、91.3%和73.5%,相较于基线模型均有提升,验证了该模型的有效性。 展开更多
关键词 实体关系抽取 短文本 残差膨胀卷积网络 语义特征 联合抽取 BERT编码
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
3
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码 卷积注意力机制 残差网络
在线阅读 下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别 被引量:1
4
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码 性能衰退指标 多尺度残差收缩网络 寿命状态识别
在线阅读 下载PDF
基于改进残差卷积自编码网络的类自适应旋转机械故障诊断 被引量:5
5
作者 张剑 程培源 邵思羽 《计算机应用》 CSCD 北大核心 2022年第8期2440-2449,共10页
针对旋转机械传感器信号样本有限影响深层网络模型训练学习的问题,提出一种结合改进残差卷积自编码网络与类自适应方法的故障诊断模型应对小样本数据。首先将少量已标记的源域数据和目标域数据创建为成对样本,并设计一种改进的一维残差... 针对旋转机械传感器信号样本有限影响深层网络模型训练学习的问题,提出一种结合改进残差卷积自编码网络与类自适应方法的故障诊断模型应对小样本数据。首先将少量已标记的源域数据和目标域数据创建为成对样本,并设计一种改进的一维残差卷积自编码网络对两种不同分布的原始振动信号进行特征提取;其次,利用最大均值差异(MMD)减小分布差异,并将两个域同一故障类别的数据空间映射到一个共同的特征空间,最终实现准确的故障诊断。实验结果表明,与微调、域自适应等方法相比,所提模型能够有效提高不同工况、微量已标记的目标域振动数据下的故障诊断准确率。 展开更多
关键词 残差卷积自编码网络 自适应 旋转机械故障诊断 小样本 最大均值差异
在线阅读 下载PDF
残差卷积自编码网络无监督迁移轴承故障诊断 被引量:14
6
作者 温江涛 张鹏程 +1 位作者 孙洁娣 雷鸣 《中国机械工程》 EI CAS CSCD 北大核心 2022年第14期1707-1716,共10页
深度学习类轴承故障智能诊断研究中,一般会假设训练数据与测试数据同分布且典型故障样本充足,而实际工况复杂多变,难以获得大量标签数据。将残差学习引入卷积自编码,并结合迁移学习,提出了基于残差卷积自编码无监督域自适应迁移的故障... 深度学习类轴承故障智能诊断研究中,一般会假设训练数据与测试数据同分布且典型故障样本充足,而实际工况复杂多变,难以获得大量标签数据。将残差学习引入卷积自编码,并结合迁移学习,提出了基于残差卷积自编码无监督域自适应迁移的故障诊断方法。堆叠一维卷积自编码进行特征提取,通过残差学习避免过拟合,提高学习效率;融合多层多核概率分布适配来约束网络学习域不变特征;实现了基于无监督域自适应迁移学习的故障诊断,并获得了较高准确率的识别结果。采用凯斯西储大学轴承数据集进行验证,结果证明了所提出方法的有效性,此外还对主要参数及其影响进行了探讨并给出了对比结果。 展开更多
关键词 轴承故障诊断 无监督学习 深度迁移 残差卷积自编码 自适应
在线阅读 下载PDF
基于优化卷积自编码器的机床进给轴健康状态监测
7
作者 吴楚杰 崔益铭 +3 位作者 马骋 王强 赵雷鸣 刘阔 《组合机床与自动化加工技术》 北大核心 2025年第5期1-6,共6页
在实际工程应用中,进给轴从健康到故障时间跨度长、运行工况复杂、故障数据获取成本高,导致故障数据与健康数据存在严重的不平衡。而传统数据驱动健康监测方法往往需要大量标签数据,且监测结果依赖于标签的数量和准确性。如何在有限数据... 在实际工程应用中,进给轴从健康到故障时间跨度长、运行工况复杂、故障数据获取成本高,导致故障数据与健康数据存在严重的不平衡。而传统数据驱动健康监测方法往往需要大量标签数据,且监测结果依赖于标签的数量和准确性。如何在有限数据下,进行健康监测是目前面临的一大挑战。针对这一问题提出了一种基于优化卷积自编码器的机床进给轴健康状态监测方法,首先采用小波包对进给轴振动信号与功率信号进行去噪重构,随后对降噪后的振动信号与功率信号进行时域、频域特征提取形成振动功率多源数据集,之后搭建一种基于卷积自编码器(CAE)与双向长短时记忆网络(BiLSTM)相结合的进给轴健康监测网络,同时在网络中融合残差网络(Res)和注意力模块(SENet)提高模型收敛能力与监测准确性。试验表明所提模型可以仅采用健康数据进行训练,实现进给轴健康状态监测,健康状态监测准确率可达97.7%,优于传统CAE模型。 展开更多
关键词 残差网络 注意力机制 双向长短期记忆网络 卷积自编码 进给轴 健康状态监测
在线阅读 下载PDF
基于并联自适应残差网络与CBAM的ECT图像重建 被引量:2
8
作者 马敏 吴环 《计量学报》 CSCD 北大核心 2024年第2期214-221,共8页
为解决电容层析成像中软场效应导致重建图像精度低的问题,提出了一种基于并联自适应残差网络与卷积注意力机制的图像重建算法。通过引入并联自适应残差模块提取丰富的特征层信息,再利用压缩激励网络调整各通道的权重系数,达到过滤冗余... 为解决电容层析成像中软场效应导致重建图像精度低的问题,提出了一种基于并联自适应残差网络与卷积注意力机制的图像重建算法。通过引入并联自适应残差模块提取丰富的特征层信息,再利用压缩激励网络调整各通道的权重系数,达到过滤冗余信息的效果,引入卷积注意力机制学习浅层特征的通道和空间信息,将卷积注意力机制通道与并联自适应残差网络进行特征融合以补偿损失的浅层特征和空间信息。仿真结果表明,相比LBP算法、Landweber迭代算法、1D CNN算法,改进算法有效提高了重建质量。 展开更多
关键词 多相流测量 电容层析成像 图像重建 并联自适应残差网络 卷积注意力机制
在线阅读 下载PDF
基于多尺度自适应残差卷积神经网络的新能源配电网故障定位技术 被引量:6
9
作者 杨鹏杰 徐宇 郑晨一 《水利水电技术(中英文)》 北大核心 2023年第S02期439-446,共8页
随着新型电力系统建设的推进,分布式新能源接入配电网的比例不断提升,使得电网潮流分布更加复杂,对配电网的故障定位要求越来越高,导致现有的故障定位方法准确率低、稳定性差。对此提出一种基于多尺度自适应残差卷积神经网络的新能源配... 随着新型电力系统建设的推进,分布式新能源接入配电网的比例不断提升,使得电网潮流分布更加复杂,对配电网的故障定位要求越来越高,导致现有的故障定位方法准确率低、稳定性差。对此提出一种基于多尺度自适应残差卷积神经网络的新能源配电网故障定位方法。首先,对故障电流使用变分模态分解,得到一系列征模态函数;然后,使用多尺度自适应卷积动态调整卷积核尺寸、残差卷积提升网络学习能力的方式构建多尺度自适应残差卷积神经网络模型,特征学习输入的故障电流本征模态函数;最后,经过Softmax分类器实现故障区段分类,完成故障定位。仿真结果表明,所提方法面对新能源接入的配电网能够实现不同故障的准确定位,并且对高阻接地故障仍然具有较高的准确率。和常见的卷积神经网络、支持向量机相比,配电网故障定位准确率分别提升了5.63%、9.31%,验证了该方法的有效性。 展开更多
关键词 新型电力系统 新能源 配电网 故障定位 多尺度自适应残差卷积神经网络
在线阅读 下载PDF
基于深度卷积神经网络的场景自适应道路分割算法 被引量:19
10
作者 王海 蔡英凤 +2 位作者 贾允毅 陈龙 江浩斌 《电子与信息学报》 EI CSCD 北大核心 2017年第2期263-269,共7页
现有基于机器学习的道路分割方法存在当训练样本和目标场景样本分布不匹配时检测效果下降显著的缺陷。针对该问题,该文提出一种基于深度卷积网络和自编码器的场景自适应道路分割算法。首先,采用较为经典的基于慢特征分析(SFA)和Gentle B... 现有基于机器学习的道路分割方法存在当训练样本和目标场景样本分布不匹配时检测效果下降显著的缺陷。针对该问题,该文提出一种基于深度卷积网络和自编码器的场景自适应道路分割算法。首先,采用较为经典的基于慢特征分析(SFA)和Gentle Boost的方法,实现了带标签置信度样本的在线选取;其次,利用深度卷积神经网络(DCNN)深度结构的特征自动抽取能力,辅以特征自编码器对源-目标场景下特征相似度度量,提出了一种采用复合深度结构的场景自适应分类器模型并设计了训练方法。在KITTI测试库的测试结果表明,所提算法较现有非场景自适应道路分割算法具有较大的优越性,在检测率上平均提升约4.5%。 展开更多
关键词 道路分割 场景自适应 深度卷积神经网络 复合深度结构 自编码
在线阅读 下载PDF
基于时间卷积网络残差校正的短期风电功率预测 被引量:7
11
作者 苏连成 朱娇娇 李英伟 《太阳能学报》 EI CAS CSCD 北大核心 2023年第7期427-435,共9页
为提高短期风电功率预测的准确性,提出一种基于时间卷积网络残差校正模型的短期风电功率预测方法。首先,采取自适应噪声完备集合经验模态分解算法分离出风电功率的局部特征信息,以网格搜索与交叉验证算法优化的支持向量回归模型对各分... 为提高短期风电功率预测的准确性,提出一种基于时间卷积网络残差校正模型的短期风电功率预测方法。首先,采取自适应噪声完备集合经验模态分解算法分离出风电功率的局部特征信息,以网格搜索与交叉验证算法优化的支持向量回归模型对各分量进行预测。然后,构建时间卷积网络残差预测模型,并使用灰色关联度分析方法选择输入特征,对支持向量回归预测结果进行校正。最后,基于提出的模型对某风电场实际运行功率进行预测并与其他方法的预测精度进行比较,结果表明,该文所提方法提高了短期风电功率预测的精度。 展开更多
关键词 风电功率预测 自适应噪声完备集合经验模态分解 时间卷积网络 灰色关联度分析 残差校正
在线阅读 下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:4
12
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
在线阅读 下载PDF
改进型密集递归残差U-Net的皮肤病变图像分割
13
作者 赵德春 袁杨 +2 位作者 秦璐 韦莉 叶昌荣 《中国生物医学工程学报》 北大核心 2025年第3期291-300,共10页
皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实... 皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实现皮肤病变区域自动分割。首先,将编码层和解码层中的原始卷积块优化为递归残差卷积模块,并且使用密集连接,缓解了梯度消失问题;其次,引入特征自适应模块,通过加强有效特征和抑制无关背景噪声,增强相邻特征之间的融合程度;接着,设计双重注意力机制,其中空间注意力增大全局信息的利用效率,通道注意力用于加强通道特征间的相关性,提升网络对皮肤病变区域分割的准确率,同时采用联合Dice系数与交叉熵的损失函数训练分割网络,解决皮肤镜图像中类别不平衡的问题;最后,采用ISIC 2017皮肤病变数据集中的2000余张图片进行了消融实验和对比实验。实验结果表明,IDR2U-Net模型在Jaccard、Dice系数和准确率上分别达到了78.86%、86.92%和94.61%。改进后的模型不仅提高了精度,还实现了更精细的图像分割,特别是在处理边界模糊图像时,能有效减少欠分割现象。 展开更多
关键词 皮肤病变图像分割 U型网络 密集递归残差卷积模块 特征自适应模块 双重注意力机制
在线阅读 下载PDF
一种基于深度残差网络的图像修复算法设计与实现 被引量:1
14
作者 吴金苗 王育欣 +3 位作者 韩江宁 张家亮 张志 魏雨露 《天津农学院学报》 CAS 2024年第3期85-91,共7页
随着数字图像在人们日常生活中使用越来越多,针对破损图像缺失区域的数字图像修复问题,本文提出一种基于深度残差网络的图像修复模型。该模型总体架构基于编码-解码结构,编码器采用不同深度的残差网络,解码器分别使用反卷积网络结构和... 随着数字图像在人们日常生活中使用越来越多,针对破损图像缺失区域的数字图像修复问题,本文提出一种基于深度残差网络的图像修复模型。该模型总体架构基于编码-解码结构,编码器采用不同深度的残差网络,解码器分别使用反卷积网络结构和上采样-卷积结构。通过实验探讨在本模型中不同结构的解码器、编码器以及不同的损失函数对图像修复效果的影响。实验结果表明:本文提出的基于深度残差网络的图像修复模型,采用修改后的Resnet 34-layer作为编码器,反卷积网络作为解码器,L1 Loss作为损失函数,能够达到较好的图像修复效果。 展开更多
关键词 图像修复 残差网络 卷积 编码器-解码器
在线阅读 下载PDF
基于自适应高斯混合模型与ResDN的火焰检测算法
15
作者 王文标 时启衡 郝友维 《科学技术与工程》 北大核心 2025年第4期1580-1586,共7页
针对火焰检测算法在复杂场景下误检率高、算法适应性差、效率低等问题,设计一种轻量高效的两阶段视频火焰检测算法。第一阶段采用改进的自适应高斯混合模型(adaptive gaussian mixture model, AGMM)对视频图像序列进行快速背景建模,利... 针对火焰检测算法在复杂场景下误检率高、算法适应性差、效率低等问题,设计一种轻量高效的两阶段视频火焰检测算法。第一阶段采用改进的自适应高斯混合模型(adaptive gaussian mixture model, AGMM)对视频图像序列进行快速背景建模,利用火焰的闪烁和涌动特性,提取出序列中的可疑候选区域。第二阶段使用残差深度归一化卷积神经网络(residual deep normalization and convolutional neural network, ResDN)对可疑候选区域进行判别,并引入简化的残差块替换原有的卷积层进行轻量化设计,实现对火焰的检测与定位。相比于传统分类算法,所设计的两阶段视频火焰检测算法能够有效克服复杂场景下的环境干扰,准确快速地识别火焰,具有更高的检测率和适应性。 展开更多
关键词 火焰检测 自适应高斯混合模型(AGMM) 残差深度归一化卷积神经网络(ResDN) 机器视觉 深度学习
在线阅读 下载PDF
基于时序分解和软阈值时间卷积的交通流预测
16
作者 项新建 袁天顺 +1 位作者 何亚强 汪成立 《浙江大学学报(工学版)》 北大核心 2025年第7期1353-1361,共9页
交通流数据的高度非线性、强时间依赖性、特征冗余和噪声会降低模型的预测精度,为此提出融合自适应噪声完备集合经验模态分解(CEEMDAN)和软阈值时间卷积网络(STTCN)的短时交通流预测算法. CEEMDAN算法将历史交通流数据分解为高频和低频... 交通流数据的高度非线性、强时间依赖性、特征冗余和噪声会降低模型的预测精度,为此提出融合自适应噪声完备集合经验模态分解(CEEMDAN)和软阈值时间卷积网络(STTCN)的短时交通流预测算法. CEEMDAN算法将历史交通流数据分解为高频和低频成分.设计时间戳编码处理时间信息,使用最大信息系数(MIC)分析时间和天气特征与分解成分的相关性.将最相关特征与对应高、低频成分输入STTCN.引入软阈值机制增强高噪声数据的处理能力,软阈值参数由黏菌优化算法(SMA)调整,将预测得到的高、低频成分重构为交通流预测结果.在浙江省某高速公路数据集上,相较于基线模型,所提算法的均方误差、均方根误差和绝对偏差下降了54.97%、30.07%和34.39%.结果表明,所提算法能有效捕捉交通流的复杂动态. 展开更多
关键词 短时交通流预测 软阈值时间卷积网络 自适应噪声完备集合经验模态分解 时间戳编码 最大信息系数
在线阅读 下载PDF
基于深度残差网络的(n,1,m)卷积码盲识别
17
作者 刘杰 朱宇轩 马钰 《无线电通信技术》 2023年第6期1052-1058,共7页
针对传统(n,1,m)卷积码识别方法容错性能较差或所需数据量较大的问题,提出了一种基于深度残差网络(Residual Network, ResNet)的方法。对图像识别领域常用的二维ResNet模型进行结构调整,使其适用于一维卷积编码序列的处理;仿真生成大量... 针对传统(n,1,m)卷积码识别方法容错性能较差或所需数据量较大的问题,提出了一种基于深度残差网络(Residual Network, ResNet)的方法。对图像识别领域常用的二维ResNet模型进行结构调整,使其适用于一维卷积编码序列的处理;仿真生成大量卷积码比特序列,以不同的误比特率在序列中随机加入误比特,并按固定长度从序列截取片段作为ResNet的训练样本,分别完成编码类型和起点识别模型的训练;将待识别卷积码序列输入网络,即可输出识别结果。仿真结果表明,相比传统方法,该方法以略高的计算复杂度为代价,获得了更好的容错性和较低的识别数据量需求。 展开更多
关键词 信道编码 盲识别 (n 1 m)卷积 残差网络
在线阅读 下载PDF
基于卷积神经网络的暗光图像去噪算法研究 被引量:6
18
作者 何涛 王超 吴贵铭 《传感器与微系统》 CSCD 北大核心 2023年第12期64-67,共4页
针对暗光图像往往存在大量分布不均的噪声,极大地影响图像质量,而现有的基于单阶段卷积神经网络(CNN)的模型不能有效去除大量暗区域噪声的问题,提出一种基于CNN的暗光图像去噪算法模型。通过两种尺度的特征映射去噪模块共同构成深层CNN... 针对暗光图像往往存在大量分布不均的噪声,极大地影响图像质量,而现有的基于单阶段卷积神经网络(CNN)的模型不能有效去除大量暗区域噪声的问题,提出一种基于CNN的暗光图像去噪算法模型。通过两种尺度的特征映射去噪模块共同构成深层CNN模型,合理运用残差学习与类似自编码器单元有效地重构出去噪图像;采用结构相似性(SSIM)作为损失函数训练模型。实验结果表明:预训练模型在BSD68数据集的峰值信噪比(PSNR)和SSIM值可同时达到25.23 dB和0.927,对自然场景的噪声图像恢复的PSNR和SSIM达到14.03 dB和0.423。本文模型对高斯白噪声和暗光条件的去噪效果显著,对自然暗光场景图像有着较好的对比度恢复和去噪效果。 展开更多
关键词 卷积神经网络 图像去噪 暗光增强 自编码 残差学习
在线阅读 下载PDF
自适应深层残差3D-CNN高光谱图像快速分类算法 被引量:5
19
作者 肖志云 蒋家旭 倪晨 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第11期2017-2029,共13页
为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰... 为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰富的空间和光谱特征;此外,通过对高光谱图像样本平面空间方向的旋转和翻转操作进行数据增强的方法;以及运用TPE超参数优化算法对设定的超参数选择空间自适应寻优的方法,都可以有效地提高分类准确率.通过在TensorFlow框架下对Pavia University, Indian Pines和KSC等标准高光谱数据集上的实验结果表明,与SSRN等其他算法相比,文中算法在加深网络结构的同时,提高了分类准确率;与人工设定超参数网络相比,以TPE自适应超参数优化算法优化的网络参数数量减少约一半,训练时间缩短约10%. 展开更多
关键词 残差网络 3D卷积神经网络 自适应超参数优化 高光谱图像分类
在线阅读 下载PDF
GNSS拒止时基于并行CNN-BiLSTM回归和残差补偿的UAV导航误差校正方法 被引量:1
20
作者 韩宾 邵一涵 +3 位作者 罗颖 田杰 曾闵 江虹 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期57-69,共13页
全球导航卫星系统(GNSS)拒止时,GNSS/惯性导航系统(INS)组合导航系统的性能严重下降,导致无人机集群导航误差快速发散.目前,利用神经网络预测位置与速度代替GNSS导航信息可校正无人机INS误差,但该方法仍存在定位误差较高且在轨迹突变时... 全球导航卫星系统(GNSS)拒止时,GNSS/惯性导航系统(INS)组合导航系统的性能严重下降,导致无人机集群导航误差快速发散.目前,利用神经网络预测位置与速度代替GNSS导航信息可校正无人机INS误差,但该方法仍存在定位误差较高且在轨迹突变时预测精度急剧下降的问题.因此,提出了一种基于卷积-双向长短时记忆网络联合残差补偿的位置与速度预测方法,用于提高位置与速度预测精度.首先,针对GNSS拒止后GNSS/INS组合导航系统定位误差较高的问题,提出卷积神经网络(CNN)与双向长短时记忆网络(BiLSTM)的融合模型,该模型可建立惯性测量单元(IMU)动力学测量数据与GNSS导航信息之间的关系,实现较准确的位置和速度预测.其次,针对轨迹突变时预测效果急剧下降的问题,提出并行CNNBiLSTM回归架构,在预测位置与速度的同时,挖掘IMU动力学测量数据、预测值与预测残差之间的关系,预测并补偿预测残差,增强模型在轨迹突变时的预测精度.仿真结果表明,所提模型在预测准确性、有效性和稳定性方面都优于CNN-LSTM、LSTM网络模型. 展开更多
关键词 全球导航卫星系统拒止 卷积神经网络 双向长短时记忆网络 残差补偿 自适应卡尔曼滤波
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部