期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于分数阶全变差和自适应正则化参数的图像去模糊 被引量:9
1
作者 杨晓梅 向雨晴 +1 位作者 刘亚男 郑秀娟 《工程科学与技术》 EI CAS CSCD 北大核心 2018年第6期205-211,共7页
为更好地复原图像的纹理细节,避免求解图像去模糊模型时面临正则化参数难以选择的问题,提出了一种基于分数阶全变差(FOTV)模型和自适应更新正则化参数的非盲去模糊图像重建方法。首先,在分析不同分数阶下FOTV的幅频响应特性的基础上,采... 为更好地复原图像的纹理细节,避免求解图像去模糊模型时面临正则化参数难以选择的问题,提出了一种基于分数阶全变差(FOTV)模型和自适应更新正则化参数的非盲去模糊图像重建方法。首先,在分析不同分数阶下FOTV的幅频响应特性的基础上,采用不同分数阶次的FOTV模型约束图像的平滑(低频)部分和纹理细节(高频)部分,从而建立图像非盲去模糊重建模型。其次,为了有效地求解重建模型和实现两个正则化参数的自适应更新,采用交替方向乘子法(ADMM)将原本含有两个正则化参数的复杂问题分解成两个相对容易的子问题进行求解,每个子问题只含一个正则化参数。最后,根据偏差准则,在迭代求解过程中实现了两个正则化参数的自适应更新。将所提算法应用于包含平滑、边缘和纹理细节的多幅图像中,测试4种不同模糊核下的去模糊效果;与传统的4种去模糊算法相比,实验结果表明所提算法能自适应地更新两个正则化参数,对于纹理细节适中的图像具有较好的去模糊效果。 展开更多
关键词 非盲图像去模糊 分数阶全变差模型 自适应正则化参数更新 纹理细节
在线阅读 下载PDF
正则化参数自适应选取的声学CT温度场重建 被引量:20
2
作者 颜华 王善辉 周英钢 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第6期1301-1307,共7页
声学CT温度场重建为不适定逆问题。正则化参数的选取对重建精度有重要影响。提出一种正则化参数自适应选取的温度场重建算法——ARPSM(adaptive regularization parameter selection by minimum change criterion)算法。该算法采用一种... 声学CT温度场重建为不适定逆问题。正则化参数的选取对重建精度有重要影响。提出一种正则化参数自适应选取的温度场重建算法——ARPSM(adaptive regularization parameter selection by minimum change criterion)算法。该算法采用一种新的、称为最小变化法的正则化参数选取法,自适应地选取正则化参数,兼顾温度场细节重建和噪声抑制。模型温度场和实验室内均匀温度场的重建结果表明,与常用的L曲线法相比,最小变化法确定的正则化参数对应着更小的温度场重建误差。ARPSM算法具有较高的重建精度和较强的噪声抑制能力,可望用于仓储粮食温度分布监测等对重建质量有较高要求的应用场合。 展开更多
关键词 声学CT 重建算法 温度场 自适应正则化参数
在线阅读 下载PDF
基于二阶广义全变差的多帧图像超分辨率重建 被引量:5
3
作者 任福全 邱天爽 +1 位作者 韩军 金声 《电子学报》 EI CAS CSCD 北大核心 2015年第7期1275-1280,共6页
图像超分辨率重建是图像处理领域的重要问题.本文将二阶广义全变差用于基于正则化的多帧图像超分辨率重建问题,构建了基于二阶广义全变差正则项的图像超分辨率模型.为了更好地保持重建图像的边缘和细节,采用图像空域自适应正则化参数,... 图像超分辨率重建是图像处理领域的重要问题.本文将二阶广义全变差用于基于正则化的多帧图像超分辨率重建问题,构建了基于二阶广义全变差正则项的图像超分辨率模型.为了更好地保持重建图像的边缘和细节,采用图像空域自适应正则化参数,并针对该重建模型的非光滑性,给出了基于半二次正则化和交替方向法的求解算法.实验结果表明该模型和数值算法能够较好地提高图像的分辨率,同时可以较好地保持图像的细节信息. 展开更多
关键词 超分辨率重建 二阶广义全变差 自适应正则化参数 半二次正则 交替方向法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部