期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于改进樽海鞘群算法的无人机山区巡航
1
作者 谢小正 杜敏 +1 位作者 张子健 赵维吉 《兰州理工大学学报》 北大核心 2025年第4期43-50,共8页
针对樽海鞘群算法搜索精度低、收敛速度慢和寻优稳定性差等缺陷,提出了基于混沌映射的自适应惯性权重樽海鞘群算法.首先,在初始化阶段采用Tent混沌映射种群,使搜索空间分布更均匀;然后,在领导者位置添加Logistic混沌,在追随者位置引入... 针对樽海鞘群算法搜索精度低、收敛速度慢和寻优稳定性差等缺陷,提出了基于混沌映射的自适应惯性权重樽海鞘群算法.首先,在初始化阶段采用Tent混沌映射种群,使搜索空间分布更均匀;然后,在领导者位置添加Logistic混沌,在追随者位置引入自适应惯性权重,从而增强种群的多样性;最后,对食物源进行Gauss变异操作,使算法跳出局部最优,提升搜索精度.针对改进的樽海鞘群算法进行收敛曲线分析、函数测试结果对比和算法排名评估.结果表明,基于混沌映射的自适应惯性权重樽海鞘群算法搜索精度更高、收敛速度更快、寻优能力更强且稳定性更佳.在复杂山区巡航规划最优路径的仿真实验表明,与樽海鞘群算法相比,改进算法规划质量更高、路径更短且求解更稳定,更适用于山区环境中无人机的路径规划. 展开更多
关键词 海鞘算法 混沌映射 自适应惯性权重 路径规划 无人机
在线阅读 下载PDF
路径规划问题的多策略改进樽海鞘群算法研究 被引量:2
2
作者 赵宏伟 董昌林 +2 位作者 丁兵如 柴海龙 潘志伟 《计算机科学》 CSCD 北大核心 2024年第S01期190-198,共9页
针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映... 针对移动机器人寻找最优路径问题,提出了一种融合无标度网络、自适应权重和黄金正弦算法变异策略的樽海鞘群算法BAGSSA(Adaptive Salp Swarm Algorithm with Scale-free of BA Network and Golden Sine)。首先,生成一个无标度网络来映射跟随者的关系,增强算法全局寻优的能力,在追随者进化过程中集成自适应权重ω,以实现算法探索和开发的平衡;同时选用黄金正弦算法变异进一步提高解的精度。其次,对12个基准函数进行仿真求解,实验数据表明平均值、标准差、Wilcoxon检验和收敛曲线均优于基本樽海鞘群和其他群体智能算法,证明了所提算法具有较高的寻优精度和收敛速度。最后,将BAGSSA应用于移动机器人路径规划问题中,并在两种测试环境中进行仿真实验,仿真结果表明,改进樽海鞘群算法较其他算法所寻路径更优,并具有一定理论与实际应用价值。 展开更多
关键词 海鞘算法 无标度网络 自适应权重 黄金正弦算法 路径规划
在线阅读 下载PDF
混合多策略改进的樽海鞘群算法及其应用 被引量:9
3
作者 张家玮 李琳 张奇志 《计算机工程与设计》 北大核心 2024年第3期822-829,共8页
针对标准的樽海鞘群算法(salp swarm algorithm, SSA)在寻优过程中易出现局部最优和收敛速度慢等问题,提出一种混合多策略改进的樽海鞘群算法(ISSA)。利用佳点集策略生成初始种群,使个体均匀分布于搜索空间;将反向学习的思想融入到领导... 针对标准的樽海鞘群算法(salp swarm algorithm, SSA)在寻优过程中易出现局部最优和收敛速度慢等问题,提出一种混合多策略改进的樽海鞘群算法(ISSA)。利用佳点集策略生成初始种群,使个体均匀分布于搜索空间;将反向学习的思想融入到领导者位置更新中,提高算法的搜索精度;加入自适应t分布,利用迭代次数iter作为其自由度参数,改善算法的全局探索能力;引入精英反向学习,筛选更好的种群,避免陷入局部最优。通过一组基准函数和Wilcoxin秩和检验来检测改进算法的性能,实验结果表明,改进算法的探索能力和优化精度都得到明显改善且算法之间存在显著差异,通过实际机械设计案例进一步验证ISSA算法的有效性。 展开更多
关键词 佳点集 反向学习 自适应t分布 精英反向学习 海鞘算法 基准函数 弹簧设计问题
在线阅读 下载PDF
一种基于折射反向学习机制与自适应控制因子的改进樽海鞘群算法 被引量:25
4
作者 范千 陈振健 夏樟华 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2020年第10期183-191,共9页
为克服基本樽海鞘群算法(SSA)存在的收敛速度慢、易陷入局部最优等不足,提出了一种基于折射反向学习和自适应控制因子的新型改进樽海鞘群算法(RCSSA).首先,采用折射反向学习机制在每一次个体的求解中计算折射反向解,极大地提高了算法收... 为克服基本樽海鞘群算法(SSA)存在的收敛速度慢、易陷入局部最优等不足,提出了一种基于折射反向学习和自适应控制因子的新型改进樽海鞘群算法(RCSSA).首先,采用折射反向学习机制在每一次个体的求解中计算折射反向解,极大地提高了算法收敛精度和速度.然后,将原SSA算法中引导者的自适应控制因子引入跟随者的位置更新中,有效地控制整个搜索过程并增加了算法的局部开发能力.为验证所提RCSSA算法的优化性能,采用了7个单峰、16个多峰基准测试函数以及1个工程设计问题对其进行测试.试验中,先引入两种单策略改进的SSA算法来验证所提算法的有效性,再加入鲸鱼优化算法等5个先进的智能优化算法与之进行对比,进一步验证所提算法的优越性.研究结果表明:无论对于低维度还是高维度基准优化问题,所提算法都能有效地增强原SSA算法的开发和探索能力;并且RCSSA算法在整体优化性能方面要优于其他大多数群智能算法. 展开更多
关键词 海鞘算法 折射反向学习 自适应控制因子 智能优化算法 基准函数
在线阅读 下载PDF
基于自适应t分布与动态权重的樽海鞘群算法 被引量:10
5
作者 胡竞杰 储昭碧 +2 位作者 郭愉乐 董学平 朱敏 《计算机应用研究》 CSCD 北大核心 2023年第7期2068-2074,共7页
针对樽海鞘群算法寻优精度低、收敛速度慢和易陷入局部最优等缺点,提出一种基于自适应t分布与动态权重的樽海鞘群算法。首先,在领导者位置更新中引入蝴蝶优化算法中的全局搜索阶段公式,以此来增强全局探索能力;然后,在追随者位置更新中... 针对樽海鞘群算法寻优精度低、收敛速度慢和易陷入局部最优等缺点,提出一种基于自适应t分布与动态权重的樽海鞘群算法。首先,在领导者位置更新中引入蝴蝶优化算法中的全局搜索阶段公式,以此来增强全局探索能力;然后,在追随者位置更新中引入自适应动态权重因子来加强精英个体的引导作用,从而增强局部开发能力;最后,为了避免算法陷入局部最优,引入自适应t分布变异策略对最优个体进行变异。通过对12个基准测试函数进行求解,根据平均值、标准差、求解成功率、Wilcoxon检验和收敛曲线分析,表明所提出的算法要优于标准樽海鞘群算法,以及参与比较的其他改进樽海鞘群算法和其他群智能算法,说明了其在寻优精度和收敛速度方面都有显著提升,并且具备跳出局部最优的能力。通过将其应用在脱硝入口浓度最低点寻找上,验证了算法的有效性。 展开更多
关键词 海鞘算法 蝴蝶优化算法 动态权重 自适应t分布 收敛曲线
在线阅读 下载PDF
基于混沌映射的自适应樽海鞘群算法 被引量:15
6
作者 童斌斌 何庆 陈俊 《传感技术学报》 CAS CSCD 北大核心 2021年第1期41-48,共8页
针对樽海鞘群算法收敛速度慢、易陷入局部最优等问题,提出了一种基于混沌映射的自适应樽海鞘群算法。在种群初始化阶段引入混沌映射来增强种群的多样性,提高算法的收敛速度;改进领导者的更新方式,同时加入自适应权重,提高算法的探索和... 针对樽海鞘群算法收敛速度慢、易陷入局部最优等问题,提出了一种基于混沌映射的自适应樽海鞘群算法。在种群初始化阶段引入混沌映射来增强种群的多样性,提高算法的收敛速度;改进领导者的更新方式,同时加入自适应权重,提高算法的探索和开发能力;改进追随者的位置更新方式,减少追随者的盲目性。通过对10个测试函数进行仿真实验,并与其他优化算法进行比较,实验结果表明,在不改变原有时间复杂度的前提下,提出的算法在收敛速度和寻优精度上有较大的提升,具有更好的优化性能。 展开更多
关键词 海鞘算法 混沌映射 自适应权重 时间复杂度
在线阅读 下载PDF
融合黄金正弦混合变异的自适应樽海鞘群算法 被引量:18
7
作者 周新 邹海 《计算机工程与应用》 CSCD 北大核心 2021年第12期75-85,共11页
针对基本樽海鞘群算法收敛速度慢、收敛精度低、易陷入局部最优的缺点,提出了一种融合黄金正弦混合变异的自适应樽海鞘群算法AGHSSA(Adaptive Salp Swarm Algorithm with Golden Sine Algorithm and Hybrid Mutation)。该算法引入了自... 针对基本樽海鞘群算法收敛速度慢、收敛精度低、易陷入局部最优的缺点,提出了一种融合黄金正弦混合变异的自适应樽海鞘群算法AGHSSA(Adaptive Salp Swarm Algorithm with Golden Sine Algorithm and Hybrid Mutation)。该算法引入了自适应变化的权重因子以加强精英个体的引导作用,提升收敛速度与精度。通过黄金正弦算法优化领导者位置更新方式,增强算法的全局搜索和局部开发能力。融合邻域重心反向学习与柯西变异对最优个体位置进行扰动,提升算法跳出局部最优的能力。通过对12个基准测试函数进行仿真实验来评估改进算法的寻优能力,实验结果表明,改进算法能显著提升寻优速度和精度,并且具备较强的跳出局部最优的能力。 展开更多
关键词 海鞘算法 自适应权重 黄金正弦算法 混合变异
在线阅读 下载PDF
基于自适应樽海鞘算法的多无人机任务分配 被引量:2
8
作者 张森悦 隋学梅 李一波 《吉林大学学报(理学版)》 CAS 北大核心 2022年第5期1123-1132,共10页
针对多无人机的任务分配问题,提出一种基于自适应樽海鞘算法的多无人机任务分配方法.在经典樽海鞘算法的基础上,重新设计领导者的位置更新公式,以改善樽海鞘算法易陷入局部最优的缺陷,同时在算法迭代过程中加入自适应算子,对领导者和跟... 针对多无人机的任务分配问题,提出一种基于自适应樽海鞘算法的多无人机任务分配方法.在经典樽海鞘算法的基础上,重新设计领导者的位置更新公式,以改善樽海鞘算法易陷入局部最优的缺陷,同时在算法迭代过程中加入自适应算子,对领导者和跟随者的数量进行动态调整,以提高算法前期的全局搜索和后期跳出局部极值的能力.通过与遗传算法、粒子群优化算法、经典樽海鞘算法进行对比实验,实验结果表明,该算法对解决多无人机任务分配问题效果较好,具有更优的适应度和收敛性. 展开更多
关键词 多无人机 任务分配 自适应海鞘算法 遗传算法
在线阅读 下载PDF
基于自适应樽海鞘算法优化BP的风光互补并网发电功率预测 被引量:26
9
作者 梁恩豪 孙军伟 王延峰 《电力系统保护与控制》 CSCD 北大核心 2021年第24期114-120,共7页
为解决风光互补并网发电功率预测问题,针对前馈(BP)神经网络容易陷入局部最优而导致预测精度降低的问题,提出了一种自适应樽海鞘算法(ASSA)优化BP神经网络的风光互补并网发电功率预测模型。首先,在标准的樽海鞘算法(SSA)中引入动态权重... 为解决风光互补并网发电功率预测问题,针对前馈(BP)神经网络容易陷入局部最优而导致预测精度降低的问题,提出了一种自适应樽海鞘算法(ASSA)优化BP神经网络的风光互补并网发电功率预测模型。首先,在标准的樽海鞘算法(SSA)中引入动态权重策略和变异算子构建ASSA。其次,引入BP神经网络算法,构建BP神经网络的风光互补并网发电功率预测模型。最后,通过ASSA算法优化BP神经网络的权值和阈值,提出ASSA-BP的风光互补并网发电功率预测模型。仿真结果表明,利用ASSA-BP模型预测发电功率数据的相对误差小于BP模型预测数据的相对误差。ASSA-BP和SSA-BP的模型平均绝对误差数值更小,ASSA-BP模型的平均绝对误差最小,ASSA-BP模型的预测稳定性最强。该预测模型较传统风光互补并网发电功率预测方法有更高的精确度。 展开更多
关键词 风光互补并网发电 BP神经网络 海鞘算法(SSA) 自适应海鞘算法(assa) assa-BP预测模型
在线阅读 下载PDF
基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法 被引量:15
10
作者 刘彬 范瑞星 +3 位作者 刘浩然 张力悦 王海羽 张春兰 《通信学报》 EI CSCD 北大核心 2019年第7期151-161,共11页
针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利... 针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利用改进的变异算子与交叉算子构建樽海鞘搜索策略与差分搜索策略,更新不同的子种群,在合并子种群阶段利用两点变异算子增加种群多样性。由算法的收敛性分析可知,通过种群的迭代搜索可以找到最佳结构。实验结果表明,与其他算法相比,所提算法收敛精度与寻优效率均有提升。 展开更多
关键词 贝叶斯网络结构学习 海鞘算法 差分进化算法 自适应
在线阅读 下载PDF
基于改进樽海鞘群算法求解工程优化设计问题 被引量:17
11
作者 刘景森 袁蒙蒙 李煜 《系统仿真学报》 CAS CSCD 北大核心 2021年第4期854-866,共13页
为更好解决工程优化设计问题,改善樽海鞘群算法的寻优性能,提出一种引入有效缩放和随机交叉策略的自适应动态角色樽海鞘群算法。在领导者位置更新公式中引入帕累托分布和混沌映射,更有效地进行全局搜索;在全局和局部搜索的选择上,引入... 为更好解决工程优化设计问题,改善樽海鞘群算法的寻优性能,提出一种引入有效缩放和随机交叉策略的自适应动态角色樽海鞘群算法。在领导者位置更新公式中引入帕累托分布和混沌映射,更有效地进行全局搜索;在全局和局部搜索的选择上,引入领导者—跟随者自适应调整策略,提高收敛精度;在局部搜索中引入随机交叉策略,增加种群多样性。将改进算法应用于不同典型复杂程度的工程优化问题中,测试结果表明:其寻优结果、问题适应性和求解稳定性优于其他算法。 展开更多
关键词 海鞘算法 帕累托分布函数 混沌映射 随机交叉策略 自适应调整策略 工程优化设计
在线阅读 下载PDF
基于改进樽海鞘群算法的卸车调度优化 被引量:3
12
作者 李长安 赵德隆 +2 位作者 王国勇 吴忠强 张立杰 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第11期32-39,共8页
针对港口载煤列车的卸车调度流程主要依靠工人经验进行调度作业,存在决策时间长、作业冲突和列车在港时间过长等问题。以列车在港时间最少为总优化目标,在已知列车到港时间及堆垛与煤种对应关系的前提下,考虑工作机械可用性、作业流程... 针对港口载煤列车的卸车调度流程主要依靠工人经验进行调度作业,存在决策时间长、作业冲突和列车在港时间过长等问题。以列车在港时间最少为总优化目标,在已知列车到港时间及堆垛与煤种对应关系的前提下,考虑工作机械可用性、作业流程可达性及其相互约束关系等因素,构建了卸车调度数学模型。提出了一种基于改进樽海鞘优化算法的优化调度方法。引入自适应惯性权重,可有效地提高算法收敛速度;引入随机柯西变异策略,可有效地提高算法寻优能力。5个测试函数的测试结果表明:相比于樽海鞘优化算法、自适应樽海鞘优化算法、粒子群算法与鲸鱼优化算法,改进樽海鞘优化算法收敛速度更快,精度更高。港口堆场作业实际数据的仿真实验表明:改进樽海鞘优化算法可优化出满意的卸车调度任务,减少了火车总在港时间,提高了港口总体的工作效率。 展开更多
关键词 交通运输工程 铁路运输 卸车调度 改进海鞘算法 自适应惯性权重 柯西变异策略
在线阅读 下载PDF
改进樽海鞘群算法的永磁同步电机多参数辨识 被引量:17
13
作者 张铸 张仕杰 +2 位作者 饶盛华 张小平 王静袁 《电机与控制学报》 EI CSCD 北大核心 2022年第8期139-146,共8页
针对一类元启发式优化算法辨识永磁同步电机(PMSM)参数存在易陷入局部最优,从而导致辨识结果精度不高的问题,提出了一种结合自适应正态云模型的樽海鞘群辨识算法(CSSA)。该算法以标准樽海鞘群算法为基础,在樽海鞘追随者位置更新阶段引... 针对一类元启发式优化算法辨识永磁同步电机(PMSM)参数存在易陷入局部最优,从而导致辨识结果精度不高的问题,提出了一种结合自适应正态云模型的樽海鞘群辨识算法(CSSA)。该算法以标准樽海鞘群算法为基础,在樽海鞘追随者位置更新阶段引入自适应正态云模型,使算法初期的种群多样性得到改善,提高了全局开发能力,避免陷入局部最优;随着迭代次数增加,通过自适应调整正态云模型熵值,优化了算法后期的局部开发能力,使其收敛精度得到提高。参数辨识模型只需测量计算获得永磁同步电机的电流、电压以及角速度信息,再将改进算法通过适应度函数在辨识模型中寻优得到辨识结果。仿真与实验结果表明,提出的算法可以对永磁同步电机参数进行快速、稳定且准确的辨识。 展开更多
关键词 永磁同步电机 元启发式优化算法 参数辨识 正态云模型 自适应云模型 海鞘算法
在线阅读 下载PDF
基于改进樽海鞘群算法的提梁机主梁轻量化设计方法 被引量:1
14
作者 陈一馨 张婷 +1 位作者 刘永刚 陈晶 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期223-232,共10页
针对樽海鞘群算法在优化过程中存在收敛速度慢、求解精度低、易于陷入局部最优解等缺点,提出了基于柯西和高斯混合变异的一种自适应变异策略的樽海鞘群算法,该算法通过选出适应度值最好的前S个个体进行自适应变异,可避免算法陷入局部最... 针对樽海鞘群算法在优化过程中存在收敛速度慢、求解精度低、易于陷入局部最优解等缺点,提出了基于柯西和高斯混合变异的一种自适应变异策略的樽海鞘群算法,该算法通过选出适应度值最好的前S个个体进行自适应变异,可避免算法陷入局部最优解.通过柯西和高斯变异动态调整参数的变化提高算法的局部搜索能力和收敛速度.选取10个测试函数分别对樽海鞘群算法及改进樽海鞘群算法进行测试比较.数值分析表明,改进的樽海鞘群算法收敛速度快,寻优能力强且精度高.将改进后的算法用于提梁机主梁结构的优化设计中,该结构在满足强度、刚度、稳定性等设计要求条件下,主梁的截面积减少了13.58%,轻量化效果显著,表明该算法具有良好的工程应用价值. 展开更多
关键词 海鞘算法 自适应变异策略 柯西变异 高斯变异 提梁机主梁 轻量化
在线阅读 下载PDF
基于正交设计的折射反向学习樽海鞘群算法 被引量:17
15
作者 王宗山 丁洪伟 +3 位作者 王杰 李波 侯鹏 杨志军 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2022年第11期122-136,共15页
为克服基本樽海鞘群算法(SSA)存在的收敛速度慢、高维求解精度低等不足,提出正交折射反向学习机制和自适应惯性权重策略,嵌入SSA中,得到一种基于正交设计的折射反向学习樽海鞘群算法(OOSSA)。正交折射反向学习策略中,采用基于透镜成像... 为克服基本樽海鞘群算法(SSA)存在的收敛速度慢、高维求解精度低等不足,提出正交折射反向学习机制和自适应惯性权重策略,嵌入SSA中,得到一种基于正交设计的折射反向学习樽海鞘群算法(OOSSA)。正交折射反向学习策略中,采用基于透镜成像原理的折射反向学习策略以加强对反向解空间的勘探,极大地降低了算法陷入局部最优的概率;采用正交试验设计构建若干部分维上取折射反向值的部分反向解,深度挖掘并保存当前个体和折射反向个体的优势维度信息。此外,在跟随者位置更新阶段引入惯性权重因子,有效地改善跟随者的搜索模式并增强算法的局部开采能力。采用CEC2017基准函数进行仿真实验,同时使用Wilcoxon秩和检验、Friedman检验等方法来评价OOSSA算法的优化性能,测试结果表明所提算法的寻优精度和收敛速度明显优于基本SSA算法、8种新近的改进SSA算法和9种前沿的群体智能优化算法。此外,将所提算法应用于一个工程设计问题,结果表明该算法在工程优化方面的性能优于对比算法。最后,针对求解自主移动机器人路径规划问题,提出一种基于OOSSA的路径规划算法。在3种环境设置下对所提算法进行仿真实验,并与PSO、ABC、GWO、FA和SSA等算法进行对比。仿真结果表明,本文算法能够规划出最优的无碰撞路径。系统的实验表明OOSSA算法可作为问题优化的有效工具。 展开更多
关键词 海鞘算法 透镜折射学习 正交试验设计 自适应学习 基准函数 工程优化 路径规划
在线阅读 下载PDF
基于改进樽海鞘群算法的磁流变减摆控制优化 被引量:3
16
作者 王博 王璐琦 祝世兴 《液压与气动》 北大核心 2021年第10期150-159,共10页
针对磁流变减摆控制参数整定方法效率低、耗时长、精度差问题,提出一种基于改进樽海鞘群算法(Modified Salp Swarm Algorithm,MSSA)的减摆控制优化方法。首先,针对领导者更新引入精英个体杂交变异策略,提高全局搜索能力;然后,对于跟随... 针对磁流变减摆控制参数整定方法效率低、耗时长、精度差问题,提出一种基于改进樽海鞘群算法(Modified Salp Swarm Algorithm,MSSA)的减摆控制优化方法。首先,针对领导者更新引入精英个体杂交变异策略,提高全局搜索能力;然后,对于跟随者更新采取自适应差分变异策略,加快优化效率;最后,以摆幅最小、摆振收敛时间最短为优化目标,将改进樽海鞘群算法应用于磁流变减摆控制参数整定。基于标准函数的性能测试表明,与樽海鞘群(Salp Swarm Algorithm,SSA)、高级萤火虫(Advanced Firefly Algorithm,AFA)、粒子群(Particle Swarm Optimization,PSO)和遗传算法(Genetic Algorithm,GA)相比,改进算法的收敛精度更高,优化效率更快,性能更稳定。优化仿真实验进一步表明,相较SSA,AFA,PSO,GA优化的减摆控制系统,该整定方法优化用时短,能够使机轮平均摆幅减少4.24%以上,并确保摆振在规定时间内收敛,减摆效果更优。 展开更多
关键词 磁流变减摆器 控制优化 海鞘算法 杂交变异 自适应差分变异
在线阅读 下载PDF
基于频率自适应的Buck-Boost矩阵变换器主电路参数优选方法
17
作者 杨昭 张小平 钟达栩 《太阳能学报》 北大核心 2025年第7期290-297,共8页
提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定... 提出一种基于频率自适应的Buck-Boost矩阵变换器(BBMC)主电路参数优选方法。确定其优化对象与优化目标,建立相关数学模型及其多目标优化适应度函数,在此基础上提出采用樽海鞘群优化算法对其主电路参数展开优化研究,并进而针对不同额定输出频率下的最优主电路参数采用数值拟合方法研究确定其间变化规律的函数关系式,最后通过构建仿真模型与硬件实验装置对其效果进行验证。 展开更多
关键词 Buck-Boost矩阵变换器 频率自适应 参数优化 海鞘算法 多目标优化 数值拟合
在线阅读 下载PDF
基于改进樽海鞘算法的共享单车分布密度优化 被引量:1
18
作者 周川 《计算机科学》 CSCD 北大核心 2021年第S02期106-110,共5页
针对城市共享单车分布密度优化问题,提出了一种改进樽海鞘算法。首先,将共享单车分布密度优化问题转换成函数优化问题,以等待时间、花费时间、费用及安全代价为评价指标,建立目标函数。其次,引入一维正态云模型和非线性递减控制策略来... 针对城市共享单车分布密度优化问题,提出了一种改进樽海鞘算法。首先,将共享单车分布密度优化问题转换成函数优化问题,以等待时间、花费时间、费用及安全代价为评价指标,建立目标函数。其次,引入一维正态云模型和非线性递减控制策略来改进樽海鞘算法中引领者的搜索机制,增强对局部数据的挖掘能力;引入自适应策略来改进原算法跟随者搜索机制,避免算法陷入局部最优值。最后,通过标准测试函数以及共享单车分布密度优化仿真对所提优化算法的有效性进行了验证,结果表明:相比原樽海鞘算法、萤火虫算法及人工蜂群算法,改进的樽海鞘算法具有更好的稳定性和全局搜索能力,能够更好地实现对共享单车分布密度的优化,提升共享单车的区域利用率,对智慧交通的发展有一定的参考价值。 展开更多
关键词 共享单车 分布密度优化 海鞘算法 自适应策略 云模型
在线阅读 下载PDF
基于SSA ELM和自适应差分进化算法的拉曼放大器设计
19
作者 巩稼民 魏戌盟 +3 位作者 刘海洋 刘尚辉 金库 张依 《激光与红外》 CAS CSCD 北大核心 2023年第9期1397-1404,共8页
提出了一种将樽海鞘群算法优化极限学习机与自适应差分进化算法相结合的方法,并利用该方法优化多泵浦拉曼光纤放大器的参数配置。采用极限学习机构建泵浦参数和拉曼增益之间的非线性映射,并利用樽海鞘群优化算法对极限学习机参数进行优... 提出了一种将樽海鞘群算法优化极限学习机与自适应差分进化算法相结合的方法,并利用该方法优化多泵浦拉曼光纤放大器的参数配置。采用极限学习机构建泵浦参数和拉曼增益之间的非线性映射,并利用樽海鞘群优化算法对极限学习机参数进行优化获得最佳模型。对比分析了上述模型与BP神经网络和传统的极限学习机模型在评价指标方面的差异,结果表明本文所提出的模型预测性能较好。为了提高增益平坦性,利用自适应差分进化算法优化泵浦参数,得到最佳的参数配置。仿真结果表明,利用该方法设计出的拉曼放大器达到了预期效果,其目标增益与预测增益的最大误差不超过05dB。该方法为今后拉曼光纤放大器的设计提供了一种新的思路方法。 展开更多
关键词 拉曼光纤放大器 海鞘算法 极限学习机 自适应差分进化算法 拉曼增益
在线阅读 下载PDF
基于混合策略的麻雀搜索算法改进及应用 被引量:26
20
作者 宋立钦 陈文杰 +2 位作者 陈伟海 林岩 孙先涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期2187-2199,共13页
针对麻雀搜索算法(SSA)搜索精度不高、全局搜索能力不强、收敛速度慢和易于陷入局部最优等问题,提出了一种基于混合策略的麻雀搜索算法(HSSA)。采用改进的Circle混沌映射初始化种群,提高种群多样性;结合樽海鞘群算法改进发现者的搜索公... 针对麻雀搜索算法(SSA)搜索精度不高、全局搜索能力不强、收敛速度慢和易于陷入局部最优等问题,提出了一种基于混合策略的麻雀搜索算法(HSSA)。采用改进的Circle混沌映射初始化种群,提高种群多样性;结合樽海鞘群算法改进发现者的搜索公式,提高算法迭代前期的全局搜索能力和范围;在加入者的搜索公式中引入自适应步长因子,提高算法的局部搜索能力和收敛速度;通过镜像选择机制,提升每次迭代后的个体质量,提高算法的寻优精度和寻优速度;在位置更新处加入模拟退火机制,帮助算法跳出局部最优。利用8种测试函数进行测试,结果表明,改进算法比SSA有更好的寻优性能。将改进前后算法与极限学习机结合进行实验,人体表面肌电信号数据集的分类预测精度从80.17%提高到90.87%,证实了改进算法的可行性和良好性能。 展开更多
关键词 麻雀搜索算法 Circle混沌映射 海鞘算法 镜像选择 自适应步长因子 模拟退火机制 极限学习机
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部