期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于模糊C均值聚类-支持向量机的海底沉积物分类识别 被引量:2
1
作者 尤加春 毛慧慧 +1 位作者 段文豪 李红星 《海洋科学》 CAS CSCD 北大核心 2014年第11期122-130,共9页
在总结了目前海底底质分类研究的基础之上,率先提出利用计算机数值模拟技术对海底底质进行分类识别研究。相较于目前海底底质分类研究中所使用的水槽实验法,提出采用计算机数值正演技术模拟实际地震勘探中数据采集过程。在分类识别算法... 在总结了目前海底底质分类研究的基础之上,率先提出利用计算机数值模拟技术对海底底质进行分类识别研究。相较于目前海底底质分类研究中所使用的水槽实验法,提出采用计算机数值正演技术模拟实际地震勘探中数据采集过程。在分类识别算法上,分别采用支持向量机(SVM)和模糊C均值聚类(FCM)算法对采集的数据进行分类,为使支持向量机分类识别率达到最大,引入差分进化算法对支持向量机中关键参数进行最优化搜索,并研究了向原始地震记录中加入10%,30%,50%的高斯白噪音时算法的稳定性。在分析了这两种算法分类识别的正确率及其各自的优缺点后,提出了海底底质分类识别的两步法,即(1)先利用模糊C均值聚类进行一粗糙的预测分类,在每一类中挑选聚类性较好的数据作为支持向量机的训练样本;(2)将上一步中筛选的样本作为支持向量机的训练样本,并用差分进化算法优化支持向量机分类参数,再利用训练好的支持向量机对其余数据做预测分类。鉴于计算机数值模拟的可重复性、高效快速性及本文提出的模糊C均值聚类-支持向量机方法的鲁棒性,为便于开展进一步研究,归纳总结了一套行之有效的采用计算机数值模拟技术开展海底底质分类识别研究的一般化流程。 展开更多
关键词 双相-介质 模糊c均值聚类(FcM) 支持向量(SVM) 差分进化算法
在线阅读 下载PDF
基于模糊C均值聚类和随机森林的短时交通状态预测方法 被引量:31
2
作者 陈忠辉 凌献尧 +2 位作者 冯心欣 郑海峰 徐艺文 《电子与信息学报》 EI CSCD 北大核心 2018年第8期1879-1886,共8页
交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首... 交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首先,利用一种新颖的融合时空信息的自适应多核支持向量机(AMSVM)来预测短时交通流参数,包括流量、速度和占有率。其次,基于FCM算法分析历史交通流,获取历史交通状态信息。最后,利用随机森林算法分析所预测的短时交通流参数,得到最终预测的短时交通状态。该方法在融合时空信息的同时采用随机森林算法应用于短时交通状态预测这一全新的研究领域。实验结果表明,FCM对历史交通状态的评估方式适用于不同的高速路和城市道路场景。其次,随机森林比其它常见的机器学习方法具有更高的预测精度,从而提供实时可靠的短时交通出行信息。 展开更多
关键词 短时交通状态预测 森林 模糊c均值聚类 自适应多核支持向量
在线阅读 下载PDF
基于AFCM-SVM的滚动轴承退化状态评估与剩余寿命预测 被引量:5
3
作者 吕明珠 苏晓明 +1 位作者 刘世勋 陈长征 《组合机床与自动化加工技术》 北大核心 2020年第3期65-69,共5页
针对支持向量机模型状态数需要人为设定的不足,提出了一种基于自适应模糊C均值-支持向量机(AFCM-SVM)的滚动轴承退化状态评估与剩余寿命预测方法。该算法采用相对特征建立敏感特征数据集,利用聚类评价指标构造自适应函数,实现了模型聚... 针对支持向量机模型状态数需要人为设定的不足,提出了一种基于自适应模糊C均值-支持向量机(AFCM-SVM)的滚动轴承退化状态评估与剩余寿命预测方法。该算法采用相对特征建立敏感特征数据集,利用聚类评价指标构造自适应函数,实现了模型聚类结果的自动更新,获得了轴承运行过程中的最佳状态数;基于AFCM-SVM模型与各个运行状态的一一对应关系,确定轴承在不同退化状态下的时间间隔,实现轴承的健康等级评估与寿命预测。根据美国NSFI/UCR智能维护中心提供的滚动轴承全寿命数据对所提算法进行了验证。结果表明,不受轴承个体差异的影响,AFCM-SVM能有效实现自动聚类,识别结果符合轴承退化演变规律;与分层狄利克雷(HDP)和K-means算法相比,AFCM-SVM具有更快的运算速度和更准确的辨识能力。 展开更多
关键词 自适应模糊c均值-支持向量(afcm-svm) 滚动轴承 退化状态评估 剩余寿命预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部