To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac...To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
基金Projects(51375222,51175242)supported by the National Natural Science Foundation of China
文摘To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.