期刊文献+
共找到3,262篇文章
< 1 2 164 >
每页显示 20 50 100
基于UKF的自适应模糊推理神经网络
1
作者 徐小来 朱华勇 +2 位作者 贺中武 王伟 牛轶峰 《计算机工程与科学》 CSCD 北大核心 2012年第4期82-87,共6页
如何生成最优的模糊规则数及模糊规则的自动生成和修剪是模糊神经网络训练算法研究的重点。针对这一问题,本文提出了基于UKF的自适应模糊推理神经网络(UKF-ANFIS)。首先,通过减法聚类确定UKF-ANFIS的模糊规则及其高斯隶属函数的中心和... 如何生成最优的模糊规则数及模糊规则的自动生成和修剪是模糊神经网络训练算法研究的重点。针对这一问题,本文提出了基于UKF的自适应模糊推理神经网络(UKF-ANFIS)。首先,通过减法聚类确定UKF-ANFIS的模糊规则及其高斯隶属函数的中心和宽度参数;其次,分析了模糊神经网络的非线性动力系统表示,并用LLS和UKF分别学习线性和非线性的参数;然后,用误差下降率方法作为模糊规则修剪的策略,删除作用不大的规则;最后,通过典型的函数逼近和系统辨识实例,表明本文算法得到的模糊神经网络的结构更为紧凑,泛化性能也更佳。 展开更多
关键词 UKF 自适应模糊推理神经网络 规则约简 系统辨识 函数逼近
在线阅读 下载PDF
基于模糊推理和Jordan神经网络的磁悬浮球位置补偿控制研究
2
作者 李孝茹 陈士松 黄之文 《上海理工大学学报》 北大核心 2025年第3期299-308,共10页
针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制... 针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制框架。基础控制模块采用适应性强的PID控制器;JNN控制模块实现磁悬浮球系统的在线辨识与补偿;FI模块动态调整神经网络控制器的输出,以抑制欠训练JNN带来的不确定性影响。实验结果表明,与传统神经网络补偿控制方法相比,在跟踪阶跃信号和方波信号时,超调量分别减小了39.79%和60.61%,调节时间分别减小了19.52%和48.47%。该方法在保证稳态精度的同时,显著提升了控制系统的动态性能。 展开更多
关键词 模糊推理 Jordan神经网络 位置补偿控制 磁悬浮球
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别 被引量:1
3
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
基于模糊神经网络在线自学习的多智能体一致性控制 被引量:1
4
作者 张宪霞 唐胜杰 俞寅生 《自动化学报》 北大核心 2025年第3期590-603,共14页
针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,D... 针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,DFNN和神经网络(Neural network,NN)分别逼近控制策略和性能指标.每个智能体的DFNN执行者从零规则开始,通过在线学习,与其局部邻域的智能体交互而生成和合并规则.最终,每个智能体都有一个独特的DFNN控制器,具有不同的结构和参数,实现了最优的分布式同步控制律.仿真结果表明,本文提出的在线算法在非线性多智能体系统分布式一致性控制中优于传统基于NN的ADP算法. 展开更多
关键词 多智能体系统 自适应动态规划 动态模糊神经网络 分布式一致性控制 在线学习
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
5
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(ARBFNN)
在线阅读 下载PDF
基于自适应损失均衡梯度增强的物理信息神经网络微地震定位 被引量:1
6
作者 潘登 唐杰 +2 位作者 范忠豪 产嘉怡 彭婧妍 《石油地球物理勘探》 北大核心 2025年第3期618-630,共13页
微地震定位是微地震监测任务中的主要挑战,有助于分析水力压裂的效果。物理信息神经网络(PINN)可实现微地震定位,但PINN中多损失项的权衡对网络的训练起着重要作用。为此,文中提出了一种基于自适应损失均衡梯度增强的物理信息神经网络... 微地震定位是微地震监测任务中的主要挑战,有助于分析水力压裂的效果。物理信息神经网络(PINN)可实现微地震定位,但PINN中多损失项的权衡对网络的训练起着重要作用。为此,文中提出了一种基于自适应损失均衡梯度增强的物理信息神经网络的微地震定位方法。首先结合相对到时与程函方程的残差来形成组合损失函数;其次通过自适应项自动更新损失权重,同时加入梯度信息来增强网络;最后利用网络训练获得整个计算域的旅行时分布,并通过最小旅行时预测出震源位置。测试结果表明,该方法能够提高网络的训练稳定性和预测精度并获得较好的微地震定位效果。 展开更多
关键词 微地震 物理信息神经网络 相对到时 程函方程 自适应损失均衡梯度增强
在线阅读 下载PDF
自适应门控机制嵌入图神经网络的下一个POI推荐
7
作者 迟晋浙 刘纪平 +2 位作者 徐胜华 王勇 王琢璐 《测绘通报》 北大核心 2025年第7期90-96,共7页
下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一... 下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一个POI推荐方法。该网络主要由地理图模块、顺序图模块及语义联合模块3部分构成。其中,自适应地理图模块将自适应门控机制与图卷积神经网络结合,通过门控信号调整节点融合更新比重;自适应顺序图模块通过随机游走网络学习用户的访问偏好,并使用自适应门控机制根据目标任务属性提升相关偏好的比重;设计语义联合模块用于最大化地理图及顺序图模块的一致性分布,并使用软标签交叉熵损失函数优化联合框架的损失。为验证模型有效性,对国外公开数据集(Foursquare_NYC、Foursquare_TKY)及国内数据集(Microblog)进行试验。结果表明,本文提出的模型推荐精度均在85%以上,且相较于最先进的基线模型,精度提升2.97%~86.90%。 展开更多
关键词 自适应门控机制 下一个POI推荐 神经网络
在线阅读 下载PDF
基于RBF神经网络的光滑不确定模型自适应采样方法
8
作者 郑源 李艳 +2 位作者 高峰 张旭涛 杨勃 《计算机集成制造系统》 北大核心 2025年第8期2920-2929,共10页
由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将... 由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将其不确定度估计代入提出的考虑轮廓曲率影响的MaxCWVar信息标准中用于选择下一最优测点(NBP)。以叶片截面自由曲线为例,验证了该方法自适应采样性能的优越性。与其他自适应采样策略的对比表明,基于RBFNN的响应预测对于采样点位置确定具有很好的指导作用;与其他三个常用的NBP选择标准相比,根据MaxCWVar标准得到的采样点分布更为合理,能及时准确地跟随轮廓的几何特征变化,经样本密度与曲率之间的相关性分析得以验证。特别是对采样实时性有较高要求的情况下,所提出方法具有更好的重构精度和建模效率。研究成果对于探索快速、智能的复杂无模型光滑曲面重构方法具有启发意义。 展开更多
关键词 不确定模型 自适应采样 径向基函数神经网络 MaxCWVar信息标准 下一最优测点
在线阅读 下载PDF
基于分布式观测器的航天器姿态接管神经网络自适应控制
9
作者 骆轩宇 刘闯 岳晓奎 《宇航学报》 北大核心 2025年第8期1642-1653,共12页
针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线... 针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线性动力学模型的逼近;通过基于神经网络观测器的分布式状态观测器,解决了仅有部分卫星对目标进行测量的问题,实现了在模型未知情况下对组合体航天器的观测一致性;通过设计自适应补偿控制律,随执行机构故障调整控制参数,实现了对参考姿态运动的跟踪控制。将本文设计的控制方法应用于非合作航天器的姿态接管问题,仿真结果表明其能实现对组合体航天器姿态跟踪的精确控制。 展开更多
关键词 非合作航天器 径向基函数神经网络 自适应控制 分布式观测器 姿态接管控制
在线阅读 下载PDF
工业互联网中融入域适应的混合神经网络加密恶意流量检测
10
作者 张浩和 韩刚 +1 位作者 杨甜甜 黄睿 《信息安全研究》 北大核心 2025年第5期457-464,共8页
随着信息化技术在工控领域的快速发展,工业互联网逐渐成为网络攻击的重要目标,恶意流量检测显得尤为重要.然而,加密技术的普及使得攻击者可以轻松隐藏恶意通信内容,传统基于内容分析的流量检测方法已难以有效应对.提出一种基于混合神经... 随着信息化技术在工控领域的快速发展,工业互联网逐渐成为网络攻击的重要目标,恶意流量检测显得尤为重要.然而,加密技术的普及使得攻击者可以轻松隐藏恶意通信内容,传统基于内容分析的流量检测方法已难以有效应对.提出一种基于混合神经网络和域适应的加密恶意流量检测方案,融合ResNet网络、ResNext网络、DenseNet网络和相似度检测算法构建混合神经网络.在此基础上,加入域适应模块减少数据的偏差.通过对工业互联网公共数据集进行流预处理,在勿需解密流量的情况下从加密流量中提取深层次特征,使用混合神经网络输出一组充分利用各模型特长的更高维特征向量,随后采用域适应模块中的域分类器提升模型在不同的网络环境和时间段的稳定性和泛化能力.实验结果表明,提出的方案在加密恶意流量检测任务上表现出较好的性能和效率,提高了加密恶意流量检测的准确性. 展开更多
关键词 工业互联网 混合神经网络 加密恶意流量 相似度检测 适应
在线阅读 下载PDF
深度模糊神经网络的设计和预测
11
作者 魏呈彪 赵涛岩 +1 位作者 曹江涛 李平 《系统仿真学报》 北大核心 2025年第9期2200-2210,共11页
要:针对深度神经网络可解释性差,处理大数据回归预测问题时对模型的修正没有针对性,提出一种深度模糊神经网络(deep fuzzy neural network,DFNN)。DFNN在结构学习方面采用一种自适应模糊C均值聚类算法(adaptive fuzzy C-means,AFCM),通... 要:针对深度神经网络可解释性差,处理大数据回归预测问题时对模型的修正没有针对性,提出一种深度模糊神经网络(deep fuzzy neural network,DFNN)。DFNN在结构学习方面采用一种自适应模糊C均值聚类算法(adaptive fuzzy C-means,AFCM),通过计算引入的有效性函数确定模型的结构,即规则数和规则的前件参数;后件参数的辨识使用一种改进的灰狼优化算法(improved grey wolf optimization,IGWO),通过使用指数收敛因子替换GWO中的线性递减策略,并且使用结合动态权重更新的自适应位置更新策略,通过该算法对深度模糊神经网络的后件参数以及自适应模糊均值聚类中的初始化参数进行了优化。将DFNN和相关算法应用于Box-Jenkins燃气炉和短时交通流预测问题中,实验结果证明了提出的模型及算法的可行性。 展开更多
关键词 深度模糊神经网络 自适应聚类 灰狼算法 Box-Jenkins燃气炉 交通流预测
在线阅读 下载PDF
基于RBF神经网络自适应滑模控制技术的舰载机牵引车稳定性研究
12
作者 王阳 于鸿彬 《兵器装备工程学报》 北大核心 2025年第9期322-332,共11页
针对舰载机牵引车在舰船甲板上工作时受到海浪干扰而行驶失稳问题,设计了一种基于RBF神经网络的自适应滑模控制器。以舰载机牵引系统为研究对象,建立了舰载机牵引系统的动力学模型,利用RBF神经网络的学习能力和自适应特性对海浪环境下... 针对舰载机牵引车在舰船甲板上工作时受到海浪干扰而行驶失稳问题,设计了一种基于RBF神经网络的自适应滑模控制器。以舰载机牵引系统为研究对象,建立了舰载机牵引系统的动力学模型,利用RBF神经网络的学习能力和自适应特性对海浪环境下牵引车的未知干扰进行分析预测,对外界引起的不确定项和扰动量的上限进行自适应逼近,并通过构造Lyapunov函数导出自适应律,切换函数采用饱和函数代替符号函数,可以有效减弱趋近过程中产生的抖振。为验证该方法的稳定性,在Matlab/Simulink中搭建舰载机牵引系统运动控制仿真模型,将该控制器与普通滑模控制器进行对比分析。仿真结果表明:RBF神经网络自适应滑模控制器的整体控制效果明显优于普通滑模控制器的控制效果,使舰载机牵引车控制系统即使在海浪干扰环境下仍具有可靠的稳定性能,同时具有较强的抗干扰能力和良好的位置轨迹跟踪能力。 展开更多
关键词 舰载机牵引车 系统动力学模型 自适应滑模控制 RBF神经网络 稳定性
在线阅读 下载PDF
基于自适应双层无迹卡尔曼滤波神经网络的铝电解电流效率预测模型
13
作者 方小燕 姚立忠 +2 位作者 罗海军 张玉泽 易军 《控制理论与应用》 北大核心 2025年第3期579-589,共11页
针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无... 针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无迹卡尔曼滤波在线更新神经网络的权值和阈值;然后,在双层无迹卡尔曼滤波神经网络的状态变量均方误差中引入约束调节参数;同时,采用梯度下降法自适应调整比例调节参数,将其均方误差约束至较小的范围内,以此来削弱滤波递归计算过程中误差累积对模型的影响;最后,通过铝电解电流效率预测,验证了本文所提方法具有较高的精确度和稳定性. 展开更多
关键词 铝电解 自适应建模 双层无迹卡尔曼滤波 人工神经网络 电流效率
在线阅读 下载PDF
基于深度神经网络与状态预测器的无人飞行器自适应控制
14
作者 程喆坤 赵良玉 《固体火箭技术》 北大核心 2025年第5期799-806,共8页
集群飞行场景中广泛存在的非结构化不确定性会影响无人飞行器的控制品质,甚至导致其出现飞行安全问题。为了能够在存在非结构化不确定性的情况下实现良好的轨迹跟踪性能,提出了一种基于深度神经网络和状态预测器的自适应控制方法,利用... 集群飞行场景中广泛存在的非结构化不确定性会影响无人飞行器的控制品质,甚至导致其出现飞行安全问题。为了能够在存在非结构化不确定性的情况下实现良好的轨迹跟踪性能,提出了一种基于深度神经网络和状态预测器的自适应控制方法,利用深度神经网络的特征提取能力为非结构化不确定性设计特征向量,从而提高了控制系统的不确定性估计性能。基于非光滑Lyapunov稳定性理论推导出自适应律,保障了深度神经网络在控制系统中应用的稳定性。根据获得的估计值对不确定性进行补偿,实现了更好的轨迹跟踪和姿态控制效果。最后,数值仿真证明了所提出的方法提升了无人飞行器在非结构化不确定性影响下的轨迹跟踪精度,有效保障了无人飞行器集群飞行的稳定与安全。 展开更多
关键词 模型参考自适应控制 深度神经网络 状态预测器 非结构化不确定性
在线阅读 下载PDF
船舶碰撞危险的自适应神经网络-模糊推理评价方法 被引量:17
15
作者 姚杰 吴兆麟 方祥麟 《中国航海》 CSCD 北大核心 1999年第1期14-19,共6页
本文将模糊数学中的模糊逻辑与人工神经网络结合起来用于船舶碰撞危险度的评价,即将基于自适应神经网络的模糊推理系统用于评价船舶碰撞危险度。结果表明,基于神经网络的模糊推理系统既能利用模糊数学的模糊语言来表述人的语言,又能... 本文将模糊数学中的模糊逻辑与人工神经网络结合起来用于船舶碰撞危险度的评价,即将基于自适应神经网络的模糊推理系统用于评价船舶碰撞危险度。结果表明,基于神经网络的模糊推理系统既能利用模糊数学的模糊语言来表述人的语言,又能利用神经网络的自学习功能学习已有的经验。 展开更多
关键词 船舶 碰撞危险指标 模糊推理 神经网络
在线阅读 下载PDF
自适应神经网络下舰船航速自动控制研究
16
作者 王珂 于隆 《舰船科学技术》 北大核心 2025年第14期155-158,共4页
针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统... 针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统,依据航速跟踪误差确定控制率,并根据航行环境和船舶状态动态调整控制参数,实现航速精确控制。实验结果表明,该方法能够精准控制舰船航速,使航行轨迹最大化接近期望轨迹,航迹角偏移接近于0,验证了其在航速控制中的高精度和稳定性。 展开更多
关键词 自适应神经网络 舰船航速 自动控制 控制率
在线阅读 下载PDF
固定翼无人机纵向姿态神经网络自适应滑模控制
17
作者 麻玥瑄 陆宇 朱威禹 《航空兵器》 北大核心 2025年第3期72-77,共6页
针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设... 针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。 展开更多
关键词 固定翼 无人机 纵向姿态 神经网络 自适应 滑模控制
在线阅读 下载PDF
基于域适应物理信息神经网络的时间序列预测方法
18
作者 曹力丰 阎高伟 +2 位作者 肖舒怡 董珍柱 董平 《自动化学报》 北大核心 2025年第6期1329-1346,共18页
基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于... 基于机器学习的预测方法通常能够实现较高的拟合精度,但模型可解释性和泛化性能较差.在工业过程中,由于概念漂移现象的存在,这些方法的稳定性受到影响,使得在复杂工业环境中精确建模成为一项既困难又具挑战性的任务.为此,提出一种基于线性动力算子的域适应物理信息神经网络方法.首先通过历史工况数据建立线性动力算子神经网络模型,捕获多变量时间序列数据的动态特性.然后通过前向欧拉法对机理模型进行离散化,构造物理信息正则化项,促使模型服从机理约束.最后通过最大均值差异对历史工况和当前工况下隐藏层状态变量进行分布对齐,构建域适应损失,降低变工况下数据分布变化对模型的影响.在多个数据集上的实验表明,该方法可以有效提高模型预测精度和泛化性能. 展开更多
关键词 物理信息机器学习 概念漂移 适应 线性动力算子神经网络
在线阅读 下载PDF
基于自适应神经网络补偿的四旋翼PID控制策略
19
作者 杜飞平 熊振宇 +1 位作者 廖飞 李婷 《兵工自动化》 北大核心 2025年第6期62-68,共7页
针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,... 针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,通过数学推导与仿真分析以消除系统稳态误差,同时提升跟踪精度。在内环姿态控制器设计中,采用自适应RBF神经网络对PID进行补偿性设计,经反复的算法优化与模型验证,构建出高效的控制器模型。基于所设计的四旋翼飞行器模型,结合所提控制策略进行仿真测试。实验结果表明:该方法能对系统所遭受的外部干扰进行高效自适应补偿,有效提升了系统的稳定性,表现出良好的控制能力。 展开更多
关键词 四旋翼飞行器 内外环控制 自适应PID RBF神经网络
在线阅读 下载PDF
基于神经网络自适应MPC智能车辆轨迹跟踪仿真
20
作者 王琳 陈清华 +3 位作者 业红玲 王鹏飞 徐驰 钱爱文 《汽车安全与节能学报》 北大核心 2025年第4期638-647,共10页
传统模型预测控制(MPC)控制器的权重矩阵通常依赖人工经验调参,难以适应复杂动态环境,因此,提出一种基于反向传播(BP)神经网络的MPC权重矩阵自适应调整的方法。建立MPC智能车辆动力学模型分析不同权重系数对车辆轨迹跟踪性能的影响,构... 传统模型预测控制(MPC)控制器的权重矩阵通常依赖人工经验调参,难以适应复杂动态环境,因此,提出一种基于反向传播(BP)神经网络的MPC权重矩阵自适应调整的方法。建立MPC智能车辆动力学模型分析不同权重系数对车辆轨迹跟踪性能的影响,构造数据训练BP神经网络模型,利用Matlab/Simulink搭建BP神经网络自适应MPC控制器与Carsim联合仿真,最后从不同车速和路面附着系数2个方面设计双移线仿真工况,验证控制器在不同工况下的鲁棒性。结果表明:BP神经网络自适应MPC控制器,在路面附着系数为0.85时,不同车速下的控制效果良好;而定权重MPC控制的车辆,当车速达到65km/h时,车辆接近失稳;前者横向位移偏差和横摆角偏差的均方根分别降低44.17%和66.66%;在不同附着系数的路面上前者表现亦佳,尤其是在附着系数0.35的湿滑路面,车速30 km/h时,相对定权重MPC控制器,两项偏差均方根分别降低27.49%和49.54%。该神经网络自适应调整MPC控制器权重的方法,可为智能网联车辆中高速协同控制和特种作业车辆自主导航的轨迹跟踪性能改善提供一定参考。 展开更多
关键词 智能网联车辆 神经网络 自适应 轨迹跟踪 模型预测控制(MPC)
在线阅读 下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部