期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合自适应最优邻域和卷积神经网络的三维点云分类
被引量:
5
1
作者
张清波
严加栋
《测绘通报》
CSCD
北大核心
2023年第7期177-182,共6页
针对点云分类中提取单个点自身特征所需的邻域尺寸选择,以及低层次特征设计烦琐且表达地物属性能力较弱等问题,本文提出了一种自适应选择单点最优邻域尺寸及学习泛化能力更强的深层次特征的三维点云分类方法。首先基于自适应最优邻域尺...
针对点云分类中提取单个点自身特征所需的邻域尺寸选择,以及低层次特征设计烦琐且表达地物属性能力较弱等问题,本文提出了一种自适应选择单点最优邻域尺寸及学习泛化能力更强的深层次特征的三维点云分类方法。首先基于自适应最优邻域尺寸选择获得每个点的最优局部邻域信息,继而基于局部邻域信息提取点云低层次特征;然后设计一种以待分类点低层次特征为输入的卷积神经网络模型,学习能反映目标地物内在属性的深层次特征并实现分类;最后采用拓普康公司三维点云数据集进行试验,该数据集通过一个配备TOPCON GLS-2200三维激光扫描仪的移动平台获得。试验结果表明,本文方法分类的总体精度达90.48%,优于文中其他点云分类方法。
展开更多
关键词
点云分类
自适应最优邻域尺寸选择
深层次特征
神经网络
在线阅读
下载PDF
职称材料
题名
融合自适应最优邻域和卷积神经网络的三维点云分类
被引量:
5
1
作者
张清波
严加栋
机构
江苏城乡建设职业学院
南京杰图空间信息技术有限公司
出处
《测绘通报》
CSCD
北大核心
2023年第7期177-182,共6页
基金
江苏省高等教育教改研究立项课题(2021JSJG451)。
文摘
针对点云分类中提取单个点自身特征所需的邻域尺寸选择,以及低层次特征设计烦琐且表达地物属性能力较弱等问题,本文提出了一种自适应选择单点最优邻域尺寸及学习泛化能力更强的深层次特征的三维点云分类方法。首先基于自适应最优邻域尺寸选择获得每个点的最优局部邻域信息,继而基于局部邻域信息提取点云低层次特征;然后设计一种以待分类点低层次特征为输入的卷积神经网络模型,学习能反映目标地物内在属性的深层次特征并实现分类;最后采用拓普康公司三维点云数据集进行试验,该数据集通过一个配备TOPCON GLS-2200三维激光扫描仪的移动平台获得。试验结果表明,本文方法分类的总体精度达90.48%,优于文中其他点云分类方法。
关键词
点云分类
自适应最优邻域尺寸选择
深层次特征
神经网络
Keywords
point cloud classification
adaptive optimal neighborhood size selection
deep level features
neural networks
分类号
P208 [天文地球—地图制图学与地理信息工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合自适应最优邻域和卷积神经网络的三维点云分类
张清波
严加栋
《测绘通报》
CSCD
北大核心
2023
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部