期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
变循环发动机自适应无迹卡尔曼滤波器设计 被引量:5
1
作者 肖红亮 彭凯 +3 位作者 王占胜 符江锋 陈昊 闫波 《推进技术》 EI CAS CSCD 北大核心 2023年第5期307-314,共8页
针对变循环发动机健康参数估计问题,设计了一种自适应无迹卡尔曼滤波器。该算法通过最大化后验密度函数来建立过程噪声协方差和测量噪声协方差的自适应更新方程,以改善传统无迹卡尔曼滤波器设计中先验参数需要根据经验来设置,进而导致... 针对变循环发动机健康参数估计问题,设计了一种自适应无迹卡尔曼滤波器。该算法通过最大化后验密度函数来建立过程噪声协方差和测量噪声协方差的自适应更新方程,以改善传统无迹卡尔曼滤波器设计中先验参数需要根据经验来设置,进而导致滤波器性能受人为因素影响较大的问题。以带核心机驱动风扇级的变循环发动机为对象,进行了不可测参数估计仿真试验,对所设计的自适应无迹卡尔曼滤波器算法进行了仿真对比验证。结果表明:在单参数退化条件下,健康参数平均估计误差不大于2%;多参数退化条件下,健康参数平均估计误差不大于1.8%;该算法性能优于增广卡尔曼滤波器、传统无迹卡尔曼滤波器,相较于传统无迹卡尔曼滤波器性能提升9.5%。 展开更多
关键词 变循环发动机 参数估计 卡尔曼滤波器 自适应无迹卡尔曼滤波器 概率密度函数
在线阅读 下载PDF
采用自适应无迹卡尔曼滤波器的车速和路面附着系数估计 被引量:13
2
作者 张家旭 李静 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第3期68-75,共8页
针对车辆主动安全控制中的车速和路面附着系数这一关键信息,提出了一种实时估计该信息的滤波算法,同时建立了将包含时变噪声统计特性的七自由度非线性车辆动力学模型作为滤波算法的标称模型,以及一种自适应无迹卡尔曼滤波算法。该算法... 针对车辆主动安全控制中的车速和路面附着系数这一关键信息,提出了一种实时估计该信息的滤波算法,同时建立了将包含时变噪声统计特性的七自由度非线性车辆动力学模型作为滤波算法的标称模型,以及一种自适应无迹卡尔曼滤波算法。该算法采用传统的无迹卡尔曼滤波器来估计车速和路面附着系数,同时利用次优Sage-Husa噪声估计器对系统的噪声统计特性进行实时更新,其中采用遗忘因子限制噪声估计器的记忆长度,使新近数据发挥重要作用,使陈旧数据逐渐被遗忘,从而解决了因系统标称模型误差、外界扰动等因素引起的噪声时变的问题。在不同路面条件下进行了多种工况的实验验证,并与无迹卡尔曼滤波器的估计结果进行对比分析,结果表明,该算法具有良好的鲁棒性,其估计精度高于无迹卡尔曼滤波器,且满足车辆主动安全控制系统的要求。 展开更多
关键词 车辆动力学 自适应滤波 无迹卡尔曼滤波 次优Sage-Husa噪声估计器
在线阅读 下载PDF
基于变窗口自适应无迹卡尔曼滤波的锂离子电池荷电状态预测
3
作者 范兴明 吴润玮 +1 位作者 封浩 张鑫 《电工技术学报》 北大核心 2025年第6期1974-1983,共10页
基于噪声协方差匹配方法的自适应无迹卡尔曼滤波(AUKF)算法,其固定长度的时间窗影响算法噪声统计量。且AUKF中匹配窗口长度常由经验法确定,在复杂工作条件下容易引起噪声协方差估算的不确定。为了进一步提高算法的噪声协方差估算精度,... 基于噪声协方差匹配方法的自适应无迹卡尔曼滤波(AUKF)算法,其固定长度的时间窗影响算法噪声统计量。且AUKF中匹配窗口长度常由经验法确定,在复杂工作条件下容易引起噪声协方差估算的不确定。为了进一步提高算法的噪声协方差估算精度,提出一种由自适应遗传算法(AGA)确定初始窗口长度的变窗口自适应无迹卡尔曼滤波(VAUKF)。并引入Allan方差分析法识别误差序列的波动,再基于更新规则适当调整窗口长度,提高VAUKF对时变噪声的抗干扰能力。通过FUDS、US06工况验证所提出的VAUKF算法可行性。仿真结果表明,VAUKF相比AUKF在不同工况下都实现了荷电状态(SOC)预测精度和鲁棒性的提高。 展开更多
关键词 SOC预测 自适应无迹卡尔曼 变窗口自适应无迹卡尔曼
在线阅读 下载PDF
基于IPSO-BPNN自适应未知输入离散卡尔曼滤波器的桥面不平顺识别
4
作者 李韶华 吕壮 张宇 《振动与冲击》 北大核心 2025年第16期204-217,共14页
为实现车辆行驶过程中对桥面不平顺的准确识别,提出了一种基于改进粒子群优化的反向传播神经网络(improved particle swarm optimization-back propagation neural networks,IPSO-BPNN)自适应未知输入离散卡尔曼滤波器的桥面不平顺识别... 为实现车辆行驶过程中对桥面不平顺的准确识别,提出了一种基于改进粒子群优化的反向传播神经网络(improved particle swarm optimization-back propagation neural networks,IPSO-BPNN)自适应未知输入离散卡尔曼滤波器的桥面不平顺识别算法。基于车桥耦合模型,以轮胎-桥面接触点处竖向位移为未知输入,以车轮位移、加速度及车身加速度作为观测向量,设计未知输入离散卡尔曼滤波器;通过IPSO算法得出各桥面等级下的测量噪声协方差矩阵的最优值,通过BPNN分段实时对桥面不平顺进行等级分类,二者结合实时更新卡尔曼滤波器中的测量噪声矩阵,从而自适应识别不同桥面不平顺。在不同行驶速度、不同桥面等级、不同车桥质量比等工况下进行仿真分析,并设计了通过振动台进行车桥耦合试验的方案,根据振动台提取的车身加速度和车轮加速度等参数,通过二重积分去趋势项得到车轮位移,整理数据作为观测向量设计滤波器。为匹配振动台的1/4悬架模型,等比例缩尺二自由度车辆模型参数和桥梁模型参数,以保证缩尺后桥梁的挠曲线和竖向位移的相似性。仿真和试验结果表明,基于IPSO-BPNN自适应未知输入离散卡尔曼滤波器能够在多种工况下自适应调节,相较于传统卡尔曼滤波器,识别的桥面不平顺均方根误差、最大绝对误差和相关系数分别提高11.29%、33.52%、2.84%,该算法不仅识别精度高,而且有很强的鲁棒性。 展开更多
关键词 桥面不平顺识别 自适应卡尔曼滤波器 车桥耦合 车辆平顺性
在线阅读 下载PDF
基于改进自适应交互式多模型无迹卡尔曼滤波算法的车辆目标跟踪
5
作者 南奔洋 匡兵 景晖 《科学技术与工程》 北大核心 2025年第11期4605-4611,共7页
为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建... 为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建立车辆的运动模型,并通过无迹卡尔曼滤波对车辆目标进行跟踪。然后将子模型概率变化率作为IMM算法修正参数,对马尔可夫矩阵主对角线和非主对角线元素采用不同的修正策略。最后设置判定窗修正归一化后的马尔可夫矩阵主对角线元素,以扩大匹配模型的概率。结果表明,改进算法模型概率变化更加明显,位置和速度均方根误差均要小于原有算法,有效地提高了跟踪精度。 展开更多
关键词 目标跟踪 交互式多模型 自适应 马尔可夫矩阵 无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应双层无迹卡尔曼滤波神经网络的铝电解电流效率预测模型
6
作者 方小燕 姚立忠 +2 位作者 罗海军 张玉泽 易军 《控制理论与应用》 北大核心 2025年第3期579-589,共11页
针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无... 针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无迹卡尔曼滤波在线更新神经网络的权值和阈值;然后,在双层无迹卡尔曼滤波神经网络的状态变量均方误差中引入约束调节参数;同时,采用梯度下降法自适应调整比例调节参数,将其均方误差约束至较小的范围内,以此来削弱滤波递归计算过程中误差累积对模型的影响;最后,通过铝电解电流效率预测,验证了本文所提方法具有较高的精确度和稳定性. 展开更多
关键词 铝电解 自适应建模 双层无迹卡尔曼滤波 人工神经网络 电流效率
在线阅读 下载PDF
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法 被引量:2
7
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
自适应双层无迹卡尔曼滤波的车辆状态估计
8
作者 徐劲力 张光俊 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期29-36,共8页
针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽... 针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽车模型对车辆行驶的横摆角速度和质心侧偏角进行估计。通过改进的Sage-Husa滤波器对系统过程噪声和测量噪声进行动态调整,进而减少车辆行驶状态估计的误差。应用Carsim与Matlab/Simulink进行联合仿真以及实车试验数据来验证该估计器的有效性,并与无迹卡尔曼滤波(UKF)算法进行对比。结果表明:与UKF算法相比,该算法有效提高了车辆行驶的横摆角速度和质心侧偏角的估计精度和稳定性。 展开更多
关键词 自适应双层无迹卡尔曼滤波 Sage-Husa 参数估计 横摆角速度 质心侧偏角
在线阅读 下载PDF
基于动态噪声自适应无迹卡尔曼滤波的锂离子电池SOC估计 被引量:4
9
作者 尹康涌 孙磊 +4 位作者 李浩秒 郭东亮 肖鹏 王康丽 蒋凯 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4065-4077,共13页
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池... 锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。 展开更多
关键词 动态噪声自适应无迹卡尔曼滤波 荷电状态 二阶RC等效电路模型 无迹卡尔曼滤波
在线阅读 下载PDF
四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计 被引量:4
10
作者 邓浩楠 赵治国 +2 位作者 赵坤 李刚 于勤 《汽车工程》 EI CSCD 北大核心 2024年第8期1357-1369,共13页
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自... 路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 展开更多
关键词 分布式四轮驱动 路面附着系数 交互式多模型 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波的气流角融合方法 被引量:1
11
作者 吴云燕 黄天鹏 +2 位作者 刘武 朱雪耀 马钊 《电光与控制》 CSCD 北大核心 2024年第11期109-114,共6页
迎角、侧滑角是影响飞控系统安全的关键参数,而大气数据系统在恶劣天气、机动飞行情况下难以准确测量气流角,在故障隔离失败情况下甚至会引发飞行安全问题。鉴于此,提出基于自适应无迹卡尔曼滤波(AUKF)的气流角融合方法,通过惯导系统和... 迎角、侧滑角是影响飞控系统安全的关键参数,而大气数据系统在恶劣天气、机动飞行情况下难以准确测量气流角,在故障隔离失败情况下甚至会引发飞行安全问题。鉴于此,提出基于自适应无迹卡尔曼滤波(AUKF)的气流角融合方法,通过惯导系统和飞行器动力学模型信息构建滤波模型,同时将自适应滤波思想应用于无迹卡尔曼滤波器,利用观测残差序列构建卡方检验和自适应渐消矩阵,实现了动态飞行、故障情况下气流角的高精度输出。仿真结果表明,所提方法的性能优于传统卡尔曼滤波算法,具有较大的工程应用价值。 展开更多
关键词 迎角 侧滑角 自适应无迹卡尔曼滤波 故障自检测 卡方检验 自适应渐消矩阵
在线阅读 下载PDF
自适应渐消无迹卡尔曼滤波锂电池SoC估计 被引量:5
12
作者 郭向伟 李璐颖 +2 位作者 王晨 王亚丰 李万 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期167-175,共9页
精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子... 精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子对UKF误差协方差矩阵进行加权,并基于新型衰减因子完成AFUKF的设计,减小陈旧量测值对估计结果的影响,提高传统UKF的估计精度和跟踪能力。其次,基于自主实验平台测试数据,验证了本文所提AFUKF算法存在初始误差时,相较于传统UKF算法,ECE工况下平均绝对误差和均方根误差分别下降了47.95%和33.92%,DST工况下分别下降了36.40%和27.73%;相较于同类改进的AUKF算法,ECE工况下平均绝对误差和均方根误差分别下降了43.36%和33.51%,DST工况下分别下降了39.01%和25.63%。模型结果表明,相比于传统UKF算法以及同类型改进的AUKF算法,AFUKF具有更高的估计精度,且在相同初始SoC误差条件下具有更好的鲁棒性。 展开更多
关键词 荷电状态 衰减因子 无迹卡尔曼滤波 自适应渐消无迹卡尔曼滤波
在线阅读 下载PDF
自适应无迹卡尔曼滤波算法在水下组合导航系统中的应用 被引量:2
13
作者 肖鹏飞 许至尊 +1 位作者 白虎林 刘洺辛 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第4期121-128,共8页
【目的】解决水下组合导航系统中先验噪声与实际噪声分布不匹配时,融合滤波性能下降问题,提高自主式水下航行器导航精度。【方法】提出一种自适应无迹卡尔曼滤波算法(AUKF),在融合算法中引入自适应因子;重构系统状态方程中速度项与状态... 【目的】解决水下组合导航系统中先验噪声与实际噪声分布不匹配时,融合滤波性能下降问题,提高自主式水下航行器导航精度。【方法】提出一种自适应无迹卡尔曼滤波算法(AUKF),在融合算法中引入自适应因子;重构系统状态方程中速度项与状态变量的结合方式,解决系统方差不一致问题。通过仿真实验和半物理实验验证该算法的有效性。【结果与结论】与无迹卡尔曼滤波算法相比,在平均位置估计偏差上,AUKF算法的纬度均方根误差(RMSE)降低27%,经度RMSE降低27%,高度RMSE降低25%。AUKF在面对偏差对系统状态的扰动时能够有效抑制滤波发散,从而有效地提高自主式水下航行器的导航精度。 展开更多
关键词 组合导航 无迹卡尔曼滤波 自适应因子 捷联惯性导航 多普勒测速仪
在线阅读 下载PDF
一种基于动态残差的自适应鲁棒无迹卡尔曼滤波器定位算法 被引量:10
14
作者 许万 程兆 +1 位作者 夏瑞东 陈汉成 《中国机械工程》 EI CAS CSCD 北大核心 2023年第21期2607-2614,共8页
针对标准无迹卡尔曼滤波(UKF)定位算法无法满足移动机器人在不平整地面运动时高精度定位要求的问题,结合抗差估计理论,提出了一种自适应鲁棒无迹卡尔曼滤波器(ARUKF)定位算法。ARUKF根据动态残差对UKF的预测值进行抗差自适应调整,减小... 针对标准无迹卡尔曼滤波(UKF)定位算法无法满足移动机器人在不平整地面运动时高精度定位要求的问题,结合抗差估计理论,提出了一种自适应鲁棒无迹卡尔曼滤波器(ARUKF)定位算法。ARUKF根据动态残差对UKF的预测值进行抗差自适应调整,减小了外部干扰对系统预测值的影响,提高了系统的精度与鲁棒性,通过减少采样过程的运算量加快了运算,并提高了系统实时性。仿真和现场测试结果表明,相较于UKF算法和基于Sage-Husa的改进UKF算法,ARUKF算法对不平整地面产生的扰动能更快收敛,具有更加优异的精度、鲁棒性和实时性,平均距离误差小于2 mm,平均角度误差小于0.016 rad,可以满足更苛刻的建筑施工现场放线要求。 展开更多
关键词 精准定位 抗差估计 动态残差 自适应鲁棒无迹卡尔曼滤波器 移动机器人
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计 被引量:82
15
作者 魏克新 陈峭岩 《中国电机工程学报》 EI CSCD 北大核心 2014年第3期445-452,共8页
应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscent... 应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。 展开更多
关键词 荷电状态 健康状态 自适应无迹卡尔曼滤波器 电动汽车 锂离子动力电池
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波和经济模型预测控制的全钒液流电池SOC/SOP联合估计方法
16
作者 张宇 姚尧 +4 位作者 刘睿 金雷 薛斐 周鹏 熊斌宇 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4089-4101,共13页
荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman f... 荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman filtering,AUKF)和经济模型预测控制(economic model predictive control,EMPC)的全钒液流电池(all-vanadium redox batteries,VRB)SOC/SOP联合估计方法。首先,为了提高传统模型的建模精度,本文综合考虑了VRB的电化学场和流体力学场的耦合特性,建立了一个能够全面刻画VRB运行过程的综合等效电路模型,并采用人工蜂群算法(artificial bee colony algorithm,ABC)对模型参数进行离线辨识。随后,考虑到传统的UKF算法无法适应系统噪声,收敛性差,且忽略电池参数变化等缺点,本文提出了基于AUKF的在线参数辨识和SOC估计算法,通过自适应调整UKF算法的参数来提高模型的精度。结合SOC的估计结果,采用EMPC算法估计VRB的SOP,并综合考虑了电压、电流、SOC和电解液流速等约束条件。最后,设计了多种实验工况验证了本文提出的SOC/SOP联合估计算法的精度。文章研究内容能够为液流电池不同运行状态下峰值功率预测和储能电站的精准调度提供依据。 展开更多
关键词 全钒液流电池 荷电状态 峰值功率 在线参数辨识 自适应无迹卡尔曼滤波 经济模型预测控制
在线阅读 下载PDF
基于GA-LSTM自适应卡尔曼滤波的路面不平度识别 被引量:9
17
作者 李韶华 李健玮 冯桂珍 《振动与冲击》 EI CSCD 北大核心 2024年第9期121-130,共10页
准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-t... 准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-term memory networks,LSTM)自适应卡尔曼滤波的路面不平度识别算法。基于2自由度车辆悬架模型,通过灰色关联法选择LSTM神经网络的特征输入变量,并采用GA优化LSTM神经网络的模型参数以准确识别路面等级,并据此实时更新卡尔曼滤波器算法中的噪声矩阵,实现了在复杂路况下对路面不平度的自适应识别。仿真和试验研究表明,所提出的基于GA-LSTM自适应卡尔曼滤波算法能够快速准确的识别路面不平度与路面等级,与传统卡尔曼滤波算法相比,相关系数、均方根误差和最大绝对误差分别提高3.11%、37.5%和51.2%,表明所提算法对复杂工况具有很好的自适应能力。 展开更多
关键词 路面不平度识别 自适应卡尔曼滤波器 GA-LSTM 灰色关联法
在线阅读 下载PDF
基于改进的无迹卡尔曼滤波长基线定位算法研究 被引量:1
18
作者 侯华 王曹 +1 位作者 杨沛钊 曹俊俊 《计算机应用与软件》 北大核心 2024年第9期314-318,376,共6页
在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle, AUV)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filte... 在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle, AUV)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filter, AUKF)长基线定位算法。该算法在无迹卡尔曼算法(UKF)的基础上引入遗忘因子,充分利用新的测量数据动态调整测量协方差矩阵和过程协方差矩阵,有效避免因长期运行带来的累计误差。实验结果显示,当AUV沿两种不同轨迹运行时,AUKF算法的均方根误差最低,分别为2.901 1、19.221 5。该算法定位精度高,适用于长时间工作的高精度水下定位。 展开更多
关键词 AUV 长基线定位 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于目标优化和卡尔曼滤波的SOC估算方法 被引量:4
19
作者 邢展 王建宇 +2 位作者 闫晓钰 罗玉珺 涂燕 《电源技术》 北大核心 2025年第1期176-183,共8页
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法... 准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。 展开更多
关键词 蓄电池 SOC在线估算 蜣螂优化算法 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于改进自适应无迹卡尔曼滤波的锂电池SOC估计 被引量:17
20
作者 张周灿 谢长君 +2 位作者 曹夏令 费亚龙 李小龙 《汽车技术》 CSCD 北大核心 2018年第3期10-15,共6页
针对传统无迹卡尔曼滤波算法在估计电池荷电状态中存在收敛速度较慢、容易发散等问题,提出了一种改进的自适应无迹卡尔曼滤波算法,该算法在传统无迹卡尔曼滤波算法基础上引入了衰减因子和自适应调节因子,提高估计精度和收敛速度。以二... 针对传统无迹卡尔曼滤波算法在估计电池荷电状态中存在收敛速度较慢、容易发散等问题,提出了一种改进的自适应无迹卡尔曼滤波算法,该算法在传统无迹卡尔曼滤波算法基础上引入了衰减因子和自适应调节因子,提高估计精度和收敛速度。以二阶RC模型为基础,运用最小二乘法对模型参数进行辨识,采用基于UT变换的自适应无迹卡尔曼滤波器算法实现对锂电池SOC的估计。搭建锂电池充放电试验平台,测试试验结果表明,该算法对锂电池SOC估计精度小于1%,在估计精度及收敛速度上均优于传统无迹卡尔曼滤波算法。 展开更多
关键词 自适应无迹卡尔曼滤波器 荷电状态 最小二乘法 自适应调节因子 估计精度
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部