期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于自适应损失函数的句子级远程监督关系抽取 被引量:1
1
作者 胡峰 杨新瑞 +2 位作者 汤成富 邓维斌 刘群 《智能系统学报》 CSCD 北大核心 2024年第3期697-706,共10页
远程监督关系抽取是一种关系抽取方法,现有方法主要采用多实例学习,在具有相同实体对的样例包上进行关系抽取。但是,包级方法只能缓解却并不能完全解决错误标签问题。基于此,文中首先分析了干净数据和噪声数据的分布,提出了一种新的自... 远程监督关系抽取是一种关系抽取方法,现有方法主要采用多实例学习,在具有相同实体对的样例包上进行关系抽取。但是,包级方法只能缓解却并不能完全解决错误标签问题。基于此,文中首先分析了干净数据和噪声数据的分布,提出了一种新的自适应损失函数;在此基础上,提出了一种基于自适应损失函数的句子级远程监督关系抽取方法。在公开数据集NYT-10以及基于TACRED的合成数据集上的实验结果表明:文中提出的方法优于对比文献中的方法,能够更有效地区分错误标签噪声样例和干净样例,提高了句子级远程监督关系抽取的准确率。 展开更多
关键词 自然语言处理 信息抽取 关系抽取 远程监督 噪声分离 噪声标注 负训练 自适应损失函数
在线阅读 下载PDF
基于多数据融合和自适应加权混合损失函数约束的地震波初至智能拾取方法
2
作者 赵军才 马江涛 +3 位作者 刘洋 王宁 胡亚东 谭勇 《石油物探》 北大核心 2025年第4期691-700,共10页
初至拾取是地震数据处理的关键环节之一,其拾取精度直接影响速度模型的构建及静校正效果。常规基于卷积神经网络的初至拾取方法虽然效果显著,但在黄土塬等复杂地表地区,由于初至波能量弱、背景噪声强等因素影响,拾取效果往往不佳。为此... 初至拾取是地震数据处理的关键环节之一,其拾取精度直接影响速度模型的构建及静校正效果。常规基于卷积神经网络的初至拾取方法虽然效果显著,但在黄土塬等复杂地表地区,由于初至波能量弱、背景噪声强等因素影响,拾取效果往往不佳。为此,提出了一种基于多数据融合和自适应加权混合损失函数约束的深度学习初至拾取方法。首先,将地震记录、偏移距和高程信息进行融合,构建多数据融合模型,提升方法的鲁棒性;然后,通过自适应加权策略优化多个损失函数的组合,构建自适应加权混合损失函数来有效约束模型的训练过程,进而提升模型的初至拾取精度。实际地震数据测试结果表明,在复杂地质条件下的弱初至、强噪声情况下,所提出的初至拾取方法较常用的长/短时窗均值比方法和地震图像深度语义分割方法(简称分割方法)具有更好的拾取效果和更强的抗噪性能,测试结果验证了方法的有效性和鲁棒性。 展开更多
关键词 初至拾取 卷积神经网络 数据融合 自适应加权混合损失函数
在线阅读 下载PDF
基于自适应特征提取的手套细粒度检测算法
3
作者 李立 陈习文 +4 位作者 金淼 张军 刘莉 余锋 姜明华 《科学技术与工程》 北大核心 2025年第28期12108-12119,共12页
在电力作业场景下,作业人员需要根据不同的作业场景佩戴相应类别的手套。由于作业环境的不确定性引起的手套特征变化,现有算法难以准确地对作业人员所佩戴的手套类别进行有效识别。针对复杂环境下目标鲁棒性特征提取困难的问题,提出一... 在电力作业场景下,作业人员需要根据不同的作业场景佩戴相应类别的手套。由于作业环境的不确定性引起的手套特征变化,现有算法难以准确地对作业人员所佩戴的手套类别进行有效识别。针对复杂环境下目标鲁棒性特征提取困难的问题,提出一种基于自适应特征提取网络(adaptive feature extraction network,AFEN)的手套细粒度检测算法。首先,AFEN算法在特征提取部分构建自适应特征提取(adaptive feature extraction,AFE)结构,通过自适应调整特征提取模块的大小,以更好地捕捉变化目标的形状特征。其次,算法在特征提取部分构建全局高效注意力机制,帮助模型捕捉不同尺度的特征并更加关注关键特征,提升模型识别的准确性。同时,在检测部分构建小目标检测结构,增强模型对小目标的感知能力,提高模型对小目标的检测效果。最后,AFEN算法使用自适应损失函数,有助于模型更准确地定位目标,进一步提高模型定位精度。较于最优的算法,AFEN算法对手套类别识别准确率达到75.7%,召回率达到73.2%,提升了2.4%,平均精度达到76.3%,提升了2.5%,证明了AFEN算法在手套细粒度检测中的有效性和准确性,并在https://github.com/wtu1020/ElectricGlove-Dataset公开了手套数据集。 展开更多
关键词 电力作业 手套细粒度检测 自适应特征提取(AFE) 全局注意力机制 小目标检测结构 自适应损失函数
在线阅读 下载PDF
基于混合模型的多类型机场航班过站时间预测 被引量:1
4
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
基于多任务学习的桃园环境检测方法研究
5
作者 汪语哲 李卓徽 段晓东 《中国农机化学报》 北大核心 2025年第10期146-152,160,共8页
桃园场景复杂,为辅助农业机器人更好地感知环境,快速精准识别桃园中的桃子和道路,针对当前现有的模型任务单一、检测精度低和推理速度慢等实际问题,改进YOLOv5n并提出一种高效的多任务学习网络MTL-YOLO,同时完成目标检测和语义分割两类... 桃园场景复杂,为辅助农业机器人更好地感知环境,快速精准识别桃园中的桃子和道路,针对当前现有的模型任务单一、检测精度低和推理速度慢等实际问题,改进YOLOv5n并提出一种高效的多任务学习网络MTL-YOLO,同时完成目标检测和语义分割两类任务。首先,在YOLOv5n的基础上添加可行驶区域分割检测头,实现对桃子和桃园道路的检测;其次,使用轻量级ShuffleNet V2作为MTL-YOLO的主干网络,在保证检测精度的同时大大降低模型计算量;然后,在模型的Neck部分嵌入RepNCSPELAN4模块,替换掉原有的C3模块,增强模型的特征提取能力,并进一步减少模型计算量;最后,提出一种适用于多任务模型的自适应损失权重调整方法,避免手动优化两类任务损失权重的复杂过程并加强两类任务训练的相关性。结果表明,改进后的MTL-YOLO目标检测精度由原算法的82.1%提高到84.7%;语义分割精度比主流的Mask R-CNN和YOLACT算法分别提高0.3%、2.5%;模型的实时推理速度达到110 f/s。 展开更多
关键词 目标检测 语义分割 多任务学习 轻量化 自适应损失函数
在线阅读 下载PDF
基于改进深度压缩感知的倒装芯片超声激励振动信号去噪方法
6
作者 李延彬 李可 顾杰斐 《仪表技术与传感器》 北大核心 2025年第1期85-91,共7页
针对高频超声激励下的倒装芯片振动信号易受噪声影响且传统稀疏去噪方法重构表现差的问题,提出了一种基于改进深度压缩感知的信号去噪方法。针对传统稀疏方法存在提取能力不足的问题,设计了基于短时傅里叶变换的深度压缩感知模型;为了... 针对高频超声激励下的倒装芯片振动信号易受噪声影响且传统稀疏去噪方法重构表现差的问题,提出了一种基于改进深度压缩感知的信号去噪方法。针对传统稀疏方法存在提取能力不足的问题,设计了基于短时傅里叶变换的深度压缩感知模型;为了增强模型的泛化能力,提出了利用余弦退火噪声增强数据的方法;为进一步增强模型对强噪声干扰信号的鲁棒性,提出了样本加权自适应损失,最终实现了信号的重构和去噪。仿真和实验结果表明:所提方法能够有效去除倒装芯片振动信号中的噪声,在信号重构精确度方面优于传统方法。 展开更多
关键词 倒装芯片 超声激励振动检测 压缩感知 数据增强 自适应损失函数
在线阅读 下载PDF
红外与可见光图像多特征自适应融合方法 被引量:4
7
作者 王君尧 王志社 +2 位作者 武圆圆 陈彦林 邵文禹 《红外技术》 CSCD 北大核心 2022年第6期571-579,共9页
由于成像机理不同,红外图像以像素分布表征典型目标,而可见光图像以边缘和梯度描述纹理细节,现有的融合方法不能依据源图像特征自适应变化,造成融合结果不能同时保留红外目标特征与可见光纹理细节。为此,本文提出红外与可见光图像多特... 由于成像机理不同,红外图像以像素分布表征典型目标,而可见光图像以边缘和梯度描述纹理细节,现有的融合方法不能依据源图像特征自适应变化,造成融合结果不能同时保留红外目标特征与可见光纹理细节。为此,本文提出红外与可见光图像多特征自适应融合方法。首先,构建了多尺度密集连接网络,可以有效聚合所有不同尺度不同层级的中间特征,利于增强特征提取和特征重构能力。其次,设计了多特征自适应损失函数,采用VGG-16网络提取源图像的多尺度特征,以像素强度和梯度为测量准则,以特征保留度计算特征权重系数。多特征自适应损失函数监督网络训练,可以均衡提取源图像各自的特征信息,从而获得更优的融合效果。公开数据集的实验结果表明,该方法在主、客观评价方面均优于其他典型方法。 展开更多
关键词 图像融合 密集连接 自适应损失函数 可见光图像 红外图像
在线阅读 下载PDF
基于SAW-PCL的输电线路缺销螺栓弱监督检测方法 被引量:1
8
作者 赵振兵 马迪雅 +3 位作者 丁洁涛 翟永杰 赵文清 张珂 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第11期3319-3326,共8页
螺栓作为输电线路中不可或缺的紧固件,其缺销必然会引起重大的安全隐患。针对螺栓目标较小、标注难度大的问题,提出了一种基于SAW-PCL的输电线路缺销螺栓弱监督检测方法。该方法通过图像级标注信息即可定位到螺栓目标。在主网络中引入... 螺栓作为输电线路中不可或缺的紧固件,其缺销必然会引起重大的安全隐患。针对螺栓目标较小、标注难度大的问题,提出了一种基于SAW-PCL的输电线路缺销螺栓弱监督检测方法。该方法通过图像级标注信息即可定位到螺栓目标。在主网络中引入卷积块注意模块(CBAM),抑制无用的背景特征,提取螺栓精细特征,提高螺栓的检测能力。针对弱监督检测中缺销螺栓的检测精度远低于正常螺栓及不平衡性问题,提出自适应加权损失函数(SAW),动态调节模型对不同类别样本的学习程度,均衡不同类别之间的检测精度,并定义了平均类间检测精度差(ADPD)来评价不平衡性。构建的自适应加权损失函数可以提升缺销螺栓的检测精度,对正常螺栓和缺销螺栓的检测精度有一定的均衡能力,定义的ADPD可以评价模型检测性能的平衡度。在自建数据集V1上的实验结果表明:改进方法的平均准确率均值(mAP)提高了19.7%,ADPD值降低了21.8,在mAP和ADPD双重指标评估下的模型表现出了更好的缺销螺栓检测能力。 展开更多
关键词 缺销螺栓检测 弱监督 平均类间检测精度差 自适应加权损失函数 深度学习
在线阅读 下载PDF
基于多任务学习的间质性肺病分割算法
9
作者 李威 陈玲 +8 位作者 徐修远 朱敏 郭际香 周凯 牛颢 张煜宸 易珊烨 章毅 罗凤鸣 《计算机应用》 CSCD 北大核心 2024年第4期1285-1293,共9页
间质性肺病(ILD)的分割标签标注成本极高,且现有数据集通常存在样本量较少的问题,导致训练的模型效果较差。针对该问题,提出一种基于多任务学习的ILD分割算法。首先,基于U-Net构建多任务分割模型;其次,使用生成的肺部分割标签作为辅助... 间质性肺病(ILD)的分割标签标注成本极高,且现有数据集通常存在样本量较少的问题,导致训练的模型效果较差。针对该问题,提出一种基于多任务学习的ILD分割算法。首先,基于U-Net构建多任务分割模型;其次,使用生成的肺部分割标签作为辅助任务标签进行多任务学习;最后,使用一种自适应调整多任务损失函数权重的方法,平衡主任务和辅助任务的损失。在自构建的ILD数据集上的实验结果表明,多任务分割模型的Dice相似系数(DSC)达到了82.61%,与U-Net相比提升了2.26个百分点。验证了所提算法可以提升ILD的分割性能,协助临床医生进行ILD诊断。 展开更多
关键词 间质性肺病 语义分割 小样本量 多任务学习 自适应多任务损失函数
在线阅读 下载PDF
改进Faster R-CNN方法的太赫兹图像小尺度物体检测 被引量:3
10
作者 肖飞 沈韬 曾凯 《小型微型计算机系统》 CSCD 北大核心 2022年第6期1210-1216,共7页
随着世界性反恐举措的加强,隐匿在人体衣物、箱包中的小尺度危险物体如手枪、管制刀具等的检测越发重要.本文首先将非局部均值滤波方法和边缘增强方法结合,用以增强太赫兹人体安检图像质量.然后基于Faster R-CNN方法,提出了一种Double-... 随着世界性反恐举措的加强,隐匿在人体衣物、箱包中的小尺度危险物体如手枪、管制刀具等的检测越发重要.本文首先将非局部均值滤波方法和边缘增强方法结合,用以增强太赫兹人体安检图像质量.然后基于Faster R-CNN方法,提出了一种Double-RPN方法,该方法解决了主网络(以VGG16为例)在进行特征提取时,深层卷积池化操作引发信息流失从而导致小尺度物体检测准确率下降的问题.最后针对Double-RPN方法提出自适应损失函数,用以增强对困难样本的训练,并在主网络一致的前提下对该自适应损失函数进行消融实验分析.实验结果表明,本文提出的改进方法在手机和刀两类小尺度物体上较未改进之前检测准确率分别提升7.5%、4.7%,平均检测准确率提升4.06%. 展开更多
关键词 太赫兹图像 小尺度物体检测 Double-RPN方法 自适应损失函数
在线阅读 下载PDF
基于多尺度残差双域注意力网络的乳腺动态对比度增强磁共振成像肿瘤分割方法 被引量:1
11
作者 刘侠 吕志伟 +2 位作者 李博 王波 王狄 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1774-1785,共12页
针对乳腺肿瘤大小形态多变、边界模糊以及前景与背景间严重类不平衡的问题,该文提出一种多尺度残差双域注意力融合网络。该网络以多尺度卷积构成的多尺度残差块作为基本搭建模块,通过提取多尺度特征和优化梯度传播通道提高其识别不同尺... 针对乳腺肿瘤大小形态多变、边界模糊以及前景与背景间严重类不平衡的问题,该文提出一种多尺度残差双域注意力融合网络。该网络以多尺度卷积构成的多尺度残差块作为基本搭建模块,通过提取多尺度特征和优化梯度传播通道提高其识别不同尺寸目标的能力,同时融入双域注意力单元,提高网络的边缘识别和边界保持能力。另外该文提出一种混合自适应权重损失函数改善网络优化方向,缓解正负样本极度不均衡的影响。实验结果表明,该文所提方法的平均骰子相似系数(Dice)值达到0.8063,较U形网络(UNet)提高5.3%,参数量下降73.36%,具有更优的分割性能。 展开更多
关键词 乳腺肿瘤分割 多尺度残差块 双域注意力 混合自适应权重损失函数
在线阅读 下载PDF
基于深度学习的腹部多器官图像分割 被引量:7
12
作者 谢飞 权媚阳 +1 位作者 管子玉 段群 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期1-7,共7页
CT扫描是临床上腹部相关疾病诊断的常规检查方式,通过CT,医生能对腹部的器官结构和组织病变结构产生更加直观的观察,从而提高了疾病诊断的准确性,因此,精准地对CT图片进行图像分割有着非常重要的临床价值。传统的分割算法针对腹部形变... CT扫描是临床上腹部相关疾病诊断的常规检查方式,通过CT,医生能对腹部的器官结构和组织病变结构产生更加直观的观察,从而提高了疾病诊断的准确性,因此,精准地对CT图片进行图像分割有着非常重要的临床价值。传统的分割算法针对腹部形变较大、体积较小且组织边缘模糊的器官分割效果相对较差。为此,该文提出了基于改进nnUNet腹部多器官图像分割方法,在腹部CT图像上分割肝脏、胃、肠道和胰腺4个器官。该文利用自适应权重的损失函数对nnUNet网络进行改进,使得网络在分割过程中更加关注体积较小且样本数量相对较少的器官特征。实验表明,该文提出方法相对于现有传统的分割方法具有更高的准确性和敏感性。 展开更多
关键词 腹部多器官分割 nnUNet 自适应权重损失函数 语义分割
在线阅读 下载PDF
基于改进度量学习的煤矿井下行人重识别方法研究 被引量:2
13
作者 张立亚 王寓 郝博南 《工矿自动化》 CSCD 北大核心 2023年第9期84-89,166,共7页
传统基于度量学习的煤矿井下行人重识别方法中,由于度量学习忽略正负样本绝对距离,造成损失函数梯度消失或梯度弥散,导致井下人员位置信息识别精度不高。针对该问题,提出了一种基于改进度量学习的煤矿井下行人重识别方法。首先,采用基... 传统基于度量学习的煤矿井下行人重识别方法中,由于度量学习忽略正负样本绝对距离,造成损失函数梯度消失或梯度弥散,导致井下人员位置信息识别精度不高。针对该问题,提出了一种基于改进度量学习的煤矿井下行人重识别方法。首先,采用基于手工设计特征的井下人员特征提取方法,对颜色空间、纹理空间等特征进行手动加工提炼,丰富特征维度。然后,采用欧氏距离对人员高维特征进行相似性计算。最后,提出一种改进的三重损失函数,通过在传统三重损失函数中加入自适应权重,增加有效样本的权重,解决了由于忽略正负样本绝对距离导致的梯度消失或梯度弥散问题。将传统识别方法与基于改进度量学习的煤矿井下行人重识别方法进行了累积匹配特征曲线验证、识别速率验证,结果表明:①基于改进度量学习的煤矿井下行人重识别方法在相似样本个数为50左右时,样本匹配概率达100%。②在2种不同标定大小图像的推理耗时上,基于改进度量学习的煤矿井下行人重识别方法较传统重识别方法分别减少了44,68 ms。③基于改进度量学习的煤矿井下行人重识别方法在舍弃行人头脚部分图像后表现更好,在相似样本个数为42左右时,样本匹配概率达100%。 展开更多
关键词 矿井人员精确定位 行人重识别 度量学习 相似性测量 自适应三重损失函数 累积匹配特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部