为了抑制轴向磁场磁通切换永磁(axial field flux-switching permanent magnet,AFFSPM)电动机齿槽转矩引起的转矩脉动,提出一种基于自适应扩展卡尔曼滤波器的齿槽转矩抑制方法.该方法根据齿槽转矩分析结果,以及AFFSPM电动机数学模型和...为了抑制轴向磁场磁通切换永磁(axial field flux-switching permanent magnet,AFFSPM)电动机齿槽转矩引起的转矩脉动,提出一种基于自适应扩展卡尔曼滤波器的齿槽转矩抑制方法.该方法根据齿槽转矩分析结果,以及AFFSPM电动机数学模型和损耗模型,将齿槽转矩引起的系统转矩脉动作为扩展状态变量,与电流环的反馈电流一起构造系统扩张状态空间方程.在状态估计过程中引入了遗忘因子,提高观测精度和速度.与基于谐波电流注入法抑制齿槽转矩的控制方法进行了控制性能和突变工况对比.结果表明:所提出控制方法在低速时转矩脉动降低了43.5%,电损耗降低了14.8%,能更有效抑制齿槽转矩脉动和提高系统效率.展开更多
针对强记忆功放的非线性问题,提出一种基于自适应扩展卡尔曼滤波与神经网络的高功放(High power amplifier,HPA)预失真算法.采用实数固定延时神经网络(Real-valued focused time-delay neural network,RVFTDNN)对间接学习结构预失真系...针对强记忆功放的非线性问题,提出一种基于自适应扩展卡尔曼滤波与神经网络的高功放(High power amplifier,HPA)预失真算法.采用实数固定延时神经网络(Real-valued focused time-delay neural network,RVFTDNN)对间接学习结构预失真系统中的预失真器和逆估计器进行建模,扩展卡尔曼滤波(Extended Kalman filter,EKF)算法训练神经网络,从理论上指出Levenberg-Marquardt(LM)算法是EKF算法的特殊情况,并用李亚普诺夫稳定性理论分析EKF算法的稳定收敛条件,推导出测量误差矩阵的自适应迭代公式.结果表明:自适应EKF算法的训练误差和泛化误差均比LM算法更低,预失真后的邻道功率比(Adjacent channel power ratio,ACPR)比LM算法改善了2 d B.展开更多
文摘为了抑制轴向磁场磁通切换永磁(axial field flux-switching permanent magnet,AFFSPM)电动机齿槽转矩引起的转矩脉动,提出一种基于自适应扩展卡尔曼滤波器的齿槽转矩抑制方法.该方法根据齿槽转矩分析结果,以及AFFSPM电动机数学模型和损耗模型,将齿槽转矩引起的系统转矩脉动作为扩展状态变量,与电流环的反馈电流一起构造系统扩张状态空间方程.在状态估计过程中引入了遗忘因子,提高观测精度和速度.与基于谐波电流注入法抑制齿槽转矩的控制方法进行了控制性能和突变工况对比.结果表明:所提出控制方法在低速时转矩脉动降低了43.5%,电损耗降低了14.8%,能更有效抑制齿槽转矩脉动和提高系统效率.
文摘针对强记忆功放的非线性问题,提出一种基于自适应扩展卡尔曼滤波与神经网络的高功放(High power amplifier,HPA)预失真算法.采用实数固定延时神经网络(Real-valued focused time-delay neural network,RVFTDNN)对间接学习结构预失真系统中的预失真器和逆估计器进行建模,扩展卡尔曼滤波(Extended Kalman filter,EKF)算法训练神经网络,从理论上指出Levenberg-Marquardt(LM)算法是EKF算法的特殊情况,并用李亚普诺夫稳定性理论分析EKF算法的稳定收敛条件,推导出测量误差矩阵的自适应迭代公式.结果表明:自适应EKF算法的训练误差和泛化误差均比LM算法更低,预失真后的邻道功率比(Adjacent channel power ratio,ACPR)比LM算法改善了2 d B.