期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进自适应交互式多模型无迹卡尔曼滤波算法的车辆目标跟踪
1
作者 南奔洋 匡兵 景晖 《科学技术与工程》 北大核心 2025年第11期4605-4611,共7页
为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建... 为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建立车辆的运动模型,并通过无迹卡尔曼滤波对车辆目标进行跟踪。然后将子模型概率变化率作为IMM算法修正参数,对马尔可夫矩阵主对角线和非主对角线元素采用不同的修正策略。最后设置判定窗修正归一化后的马尔可夫矩阵主对角线元素,以扩大匹配模型的概率。结果表明,改进算法模型概率变化更加明显,位置和速度均方根误差均要小于原有算法,有效地提高了跟踪精度。 展开更多
关键词 目标跟踪 交互式多模型 自适应 马尔可夫矩阵 无迹卡尔曼滤波
在线阅读 下载PDF
基于改进强跟踪无迹卡尔曼滤波的正交频分复用频偏跟踪和估计算法 被引量:4
2
作者 杨朝阳 杨霄鹏 +2 位作者 李腾 姚昆 张衡阳 《计算机应用》 CSCD 北大核心 2014年第8期2248-2251,2278,共5页
针对高速运动环境下多普勒效应导致的载波频偏,建立了正交频分复用(OFDM)动态状态空间模型,提出了基于改进的强跟踪无迹卡尔曼滤波(STUKF)的频偏跟踪和估计算法。该算法将强跟踪滤波思想跟UKF相结合,通过在计算量测预测协方差和互协方... 针对高速运动环境下多普勒效应导致的载波频偏,建立了正交频分复用(OFDM)动态状态空间模型,提出了基于改进的强跟踪无迹卡尔曼滤波(STUKF)的频偏跟踪和估计算法。该算法将强跟踪滤波思想跟UKF相结合,通过在计算量测预测协方差和互协方差时引入渐消因子,在调整前一时刻频偏估计误差协方差的同时又控制过程噪声协方差,实时调整增益矩阵,增强了对时变频偏的跟踪能力,提高了估计精度。最后分别在非时变和时变频偏模型下对所提算法进行了仿真验证。仿真结果表明,与UKF频偏估计算法相比,所提算法在时变频偏中具有更好的跟踪和估计性能,在相同误码率(BER)下信噪比(SNR)大约有1 dB的提升。 展开更多
关键词 移动通信 正交频分复用 跟踪无卡尔曼滤波 多普勒效应 频偏估计
在线阅读 下载PDF
强跟踪自适应平方根容积卡尔曼滤波算法 被引量:24
3
作者 徐树生 林孝工 李新飞 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2394-2400,共7页
针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代... 针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代替扩展卡尔曼滤波构建强跟踪自适应SRCKF.该算法兼具STF与自适应SRCKF的优点,在系统同时存在模型不确定性及不良测量时具有良好的滤波性能.仿真验证了所建算法的有效性. 展开更多
关键词 跟踪滤波 平方根容积卡尔曼滤波 自适应滤波 鲁棒性
在线阅读 下载PDF
基于改进强跟踪无迹卡尔曼滤波的电力信号同步相量跟踪算法 被引量:18
4
作者 牛胜锁 王春鑫 +2 位作者 梁志瑞 饶毅 陈泽雄 《电工技术学报》 EI CSCD 北大核心 2021年第11期2255-2264,共10页
配电网中各类噪声对相量测量产生较大影响,研究在高噪声环境下能够可靠检测并能快速跟踪电力信号突变的同步相量测量算法,对保证电网的稳定性与可靠性具有重要意义。提出基于量测量误差协方差次优估计的自适应强跟踪无迹卡尔曼滤波(SEME... 配电网中各类噪声对相量测量产生较大影响,研究在高噪声环境下能够可靠检测并能快速跟踪电力信号突变的同步相量测量算法,对保证电网的稳定性与可靠性具有重要意义。提出基于量测量误差协方差次优估计的自适应强跟踪无迹卡尔曼滤波(SEMEC-ASTUKF)的同步相量测量算法。首先根据递归最小二乘法提出一种自适应常值噪声统计估计器提高量测噪声协方差估计精度;然后根据电力信号突变后特征,构建突变检测算法和渐消因子次优估计算法,改善强跟踪无迹卡尔曼滤波(STUKF)算法在高噪声环境下对突变检测能力弱和跟踪突变慢的缺陷。利用实测信号对算法性能进行验证,结果表明,SEMEC-ASTUKF算法具有更高的测量精度,对突变具有更好的检测灵敏度和更高的跟踪速度。 展开更多
关键词 高噪声 跟踪无卡尔曼滤波 常值噪声统计估计器 渐消因子
在线阅读 下载PDF
状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用 被引量:18
5
作者 马艳 刘小东 《兵工学报》 EI CAS CSCD 北大核心 2019年第2期361-368,共8页
为了满足水下对抗对机动目标实时跟踪和目标航速、航向准确估计的要求,针对观测量为距离和方位的机动目标跟踪,对传统无迹卡尔曼滤波(UKF)跟踪算法进行了改善。提出根据UKF算法预测值和观测值残差的概率分布自适应调整目标状态噪声方法... 为了满足水下对抗对机动目标实时跟踪和目标航速、航向准确估计的要求,针对观测量为距离和方位的机动目标跟踪,对传统无迹卡尔曼滤波(UKF)跟踪算法进行了改善。提出根据UKF算法预测值和观测值残差的概率分布自适应调整目标状态噪声方法,使得UKF跟踪算法能够根据目标运动状态及时调整状态方程,在目标机动时减小对预测值的依赖,在目标非机动时增大对预测值的依赖。这种在线实时估计系统噪声状态的跟踪方法更加适用于机动目标的跟踪。数值仿真结果表明:该算法不仅在目标机动时具有良好的跟踪效果,而且在目标非机动时具有准确的估计性能。通过声纳信息综合处理系统验证了状态自适应UKF跟踪算法的性能。 展开更多
关键词 水下机动目标跟踪 无迹卡尔曼滤波 自适应滤波 航速 航向
在线阅读 下载PDF
基于强跟踪无迹卡尔曼滤波的内置式永磁同步电机转子位置估计 被引量:4
6
作者 马彦 李军伟 +3 位作者 王琳 阚辉玉 孙宾宾 王冬 《现代电子技术》 北大核心 2020年第13期130-133,137,共5页
为了解决当永磁同步电机在运行中受到扰动、系统状态突变时,传统的无迹卡尔曼滤波算法对转子位置的跟踪能力下降、估计精度降低,甚至会使滤波器发散等问题,文中采用基于两相静止坐标系的内置式永磁同步电机数学模型的强跟踪无迹卡尔曼... 为了解决当永磁同步电机在运行中受到扰动、系统状态突变时,传统的无迹卡尔曼滤波算法对转子位置的跟踪能力下降、估计精度降低,甚至会使滤波器发散等问题,文中采用基于两相静止坐标系的内置式永磁同步电机数学模型的强跟踪无迹卡尔曼滤波算法,研究了在经典的无迹卡尔曼滤波的基础上引入强跟踪滤波器,既保留了经典的无迹卡尔曼滤波算法的优点,又能改善无迹卡尔曼滤波算法对状态突变鲁棒性的控制。仿真和实验结果表明,当永磁同步电机运行在中高速区域时,强跟踪无迹卡尔曼滤波算法可以快速准确地跟踪转子位置,估计误差低于经典的无迹卡尔曼滤波算法。 展开更多
关键词 电动汽车 内置式永磁同步电机 转子位置估计 跟踪滤波 跟踪无卡尔曼滤波 实验验证
在线阅读 下载PDF
自适应强跟踪卡尔曼滤波器载波环设计 被引量:3
7
作者 王福军 丁小燕 +1 位作者 王前 白英广 《火力与指挥控制》 CSCD 北大核心 2019年第11期73-77,83,共6页
针对自适应Qk/Rk卡尔曼滤波算法在大频偏或运动场景切换时存在收敛速度慢、易失锁问题,提出了一种自适应强跟踪滤波算法,该算法从自适应Qk/Rk卡尔曼滤波算法出发,引入强跟踪技术。在稳态场景下,采用自适应Qk/Rk算法保证跟踪环路有较好... 针对自适应Qk/Rk卡尔曼滤波算法在大频偏或运动场景切换时存在收敛速度慢、易失锁问题,提出了一种自适应强跟踪滤波算法,该算法从自适应Qk/Rk卡尔曼滤波算法出发,引入强跟踪技术。在稳态场景下,采用自适应Qk/Rk算法保证跟踪环路有较好的跟踪精度;当场景变化时,自适应强跟踪算法保证跟踪环路有更稳健的动态性能。仿真结果表明,所提出的设计方法能够有效提高载波跟踪环路的跟踪精度和鲁棒性。 展开更多
关键词 卡尔曼滤波 自适应Qk/Rk滤波 跟踪滤波 载波跟踪环路
在线阅读 下载PDF
防发散无迹卡尔曼滤波自适应网格交互式多模型算法 被引量:4
8
作者 张园 董受全 +2 位作者 钟志通 刘淑波 初俊博 《火力与指挥控制》 CSCD 北大核心 2015年第2期40-44,共5页
针对非线性观测条件下的机动目标跟踪问题,基于机动目标的协同转弯模型,采用防发散无迹卡尔曼滤波方法和自适应网格的模型集自适应策略,研究了一种变结构交互式多模型算法。对二维机动目标跟踪的仿真结果表明,该算法与相应的固定结构交... 针对非线性观测条件下的机动目标跟踪问题,基于机动目标的协同转弯模型,采用防发散无迹卡尔曼滤波方法和自适应网格的模型集自适应策略,研究了一种变结构交互式多模型算法。对二维机动目标跟踪的仿真结果表明,该算法与相应的固定结构交互式多模型算法相比,可以解决固定结构多模型算法存在的问题,有效提高多模型算法的精度和费效比,缩短计算时间,且适合工程应用。 展开更多
关键词 无迹卡尔曼滤波(UKF) 自适应网格(AG) 交互式多模型(IMM) 机动目标跟踪 变结构多模型(VSMM)
在线阅读 下载PDF
自适应容积卡尔曼滤波在空间机动目标跟踪中的应用 被引量:4
9
作者 黄璜 林浩申 何兵 《电光与控制》 北大核心 2015年第6期56-59,共4页
针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对... 针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对滤波发散情况进行检测和抑制,有效克服了空间目标发生机动时标准滤波器无法快速准确对其进行跟踪的问题,提高了空间目标定位跟踪的数值稳定性。仿真表明:与标准SCKF相比,自适应SCKF有效地提高了机动目标被动定位跟踪的鲁棒性,具有较高的滤波精度和稳定性,同时具有良好的实时性,能更好地完成对空间机动目标的跟踪任务。 展开更多
关键词 机动目标 目标跟踪 自适应 容积卡尔曼滤波 跟踪滤波
在线阅读 下载PDF
衰减因子自适应估计卡尔曼滤波比较研究 被引量:3
10
作者 耿延睿 李大字 郭文荣 《控制工程》 CSCD 2006年第S2期70-72,共3页
针对卡尔曼滤波算法发散的问题,从卡尔曼滤波技术的稳定性出发,分析了卡尔曼滤波发散的原因,提出了新的衰减记忆卡尔曼滤波中衰减因子的自适应估计方法。该方法利用滤波残差序列在最优估计时为零均值白噪声的性质,分别检验滤波残差每一... 针对卡尔曼滤波算法发散的问题,从卡尔曼滤波技术的稳定性出发,分析了卡尔曼滤波发散的原因,提出了新的衰减记忆卡尔曼滤波中衰减因子的自适应估计方法。该方法利用滤波残差序列在最优估计时为零均值白噪声的性质,分别检验滤波残差每一个分量得出衰减因子值,并与强跟踪滤波器进行了对比研究。仿真结果表明,新算法在系统噪声特性不准确的情况下,能自适应地估计出衰减因子的大小,抑制卡尔曼滤波估计的发散,滤波精度要高于强跟踪滤波器;且其推导形式简单、计算量小、适合于在线运算。 展开更多
关键词 卡尔曼滤波 自适应滤波 跟踪滤波 衰减记忆滤波
在线阅读 下载PDF
低复杂度自适应容积卡尔曼滤波算法 被引量:12
11
作者 李春辉 马健 +1 位作者 杨永建 甘轶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页
确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适... 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 展开更多
关键词 容积卡尔曼滤波(CKF) 目标模型不确定性 跟踪滤波 自适应修正 算法复杂度
在线阅读 下载PDF
自适应IMM-UKF机动目标跟踪算法
12
作者 周晓 牟新刚 +2 位作者 柯文 苏盈 王丽 《系统工程与电子技术》 北大核心 2025年第8期2686-2695,共10页
针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适... 针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。 展开更多
关键词 目标跟踪 交互多模型 自适应 无迹卡尔曼滤波
在线阅读 下载PDF
自适应CKF强跟踪滤波器及其应用 被引量:11
13
作者 丁家琳 肖建 赵涛 《电机与控制学报》 EI CSCD 北大核心 2015年第11期111-120,共10页
针对强跟踪滤波器(STF)的理论局限以及基于UT变换的强跟踪滤波器(UTSTF)处理高维非线性系统时滤波精确度下降甚至发散等问题,提出一种基于容积卡尔曼滤波(CKF)算法的强跟踪滤波器(CKFSTF)。CKFSTF兼具了STF和CKF的优点:鲁棒性强,滤波精... 针对强跟踪滤波器(STF)的理论局限以及基于UT变换的强跟踪滤波器(UTSTF)处理高维非线性系统时滤波精确度下降甚至发散等问题,提出一种基于容积卡尔曼滤波(CKF)算法的强跟踪滤波器(CKFSTF)。CKFSTF兼具了STF和CKF的优点:鲁棒性强,滤波精度高,数值稳定性好,计算速度快,容易实现且应用范围广。此外,对于目标跟踪系统过程噪声统计特性未知的情况,在CKFSTF的基础上应用Sage-Husa噪声估值器对噪声统计特性进行在线估计,形成自适应CKFSTF。仿真结果验证了新算法的有效性。 展开更多
关键词 跟踪滤波 容积卡尔曼滤波 自适应 目标跟踪
在线阅读 下载PDF
基于模糊逻辑的自适应强跟踪UKF定位滤波算法 被引量:3
14
作者 金天 王玉宝 +1 位作者 丛丽 秦红磊 《高技术通讯》 CAS CSCD 北大核心 2012年第4期348-354,共7页
提出了一种用于GPS位置估计的模糊自适应强跟踪UKF(FAST-UKF)滤波算法。该算法采用强跟踪的自适应算法用以解决传统UKF算法容易受初始值和模型误差影响的问题;同时采用模糊逻辑系统解决强跟踪算法的参数估计问题,通过模糊逻辑系统... 提出了一种用于GPS位置估计的模糊自适应强跟踪UKF(FAST-UKF)滤波算法。该算法采用强跟踪的自适应算法用以解决传统UKF算法容易受初始值和模型误差影响的问题;同时采用模糊逻辑系统解决强跟踪算法的参数估计问题,通过模糊逻辑系统实时监测滤波器的工作状况,实时对强跟踪算法的参数进行估计和调整,确保滤波器正常工作。仿真定位结果表明,模糊自适应强跟踪UKF算法相比UKF算法、传统的自适应UKF算法和强跟踪UKF算法更能够及时地适应载体运动规律变化,同时定位性能也有所提高。 展开更多
关键词 无轨卡尔曼滤波(UKF) 模糊逻辑 自适应算法 跟踪算法
在线阅读 下载PDF
基于强跟踪UKF的自适应PHD-SLAM算法
15
作者 邹晗 吴孙勇 +1 位作者 薛秋条 李明 《信号处理》 CSCD 北大核心 2024年第10期1875-1883,共9页
传统概率假设密度同时定位与建图(Probability Hypothesis Density-Simultaneous Localization and Mapping,PHD-SLAM)方法缺乏在线自适应调整能力,容易受到不确定噪声、初始系统参数选择以及线性化近似误差的影响,从而导致粒子退化问题... 传统概率假设密度同时定位与建图(Probability Hypothesis Density-Simultaneous Localization and Mapping,PHD-SLAM)方法缺乏在线自适应调整能力,容易受到不确定噪声、初始系统参数选择以及线性化近似误差的影响,从而导致粒子退化问题,进而影响机器人位姿和地图特征点的估计精度。针对这一问题,本文提出了一种基于强跟踪和无迹卡尔曼滤波(Unscented Kalman filter,UKF),并融合最新观测数据来产生重要性密度的PHD-SLAM算法(Strong Tracking UKF PHD-SLAM,SUPHD-SLAM)。所提算法在重要性采样阶段将上一时刻的机器人位姿和地图特征点增广为联合向量,为了避免传统PHD-SLAM中扩展卡尔曼滤波(Extended Kalman filter,EKF)引入的线性化误差,利用UKF对粒子进行预测,并通过引入强跟踪滤波中的渐消因子修正UKF预测后不精确的位姿状态协方差,保持量测新息正交,从而抑制不确定噪声和不精确初始系统参数设置对状态估计的影响。随后通过UKF更新每个位姿粒子,引导粒子向高似然区域移动,以获得更准确的位姿的重要性密度,从而避免粒子退化。从重要性密度中采样新的位姿粒子,针对每个位姿粒子使用基于UKF的PHD滤波计算地图特征点,并用单簇(Single-Cluster,SC)策略更新每个位姿粒子的权重。最后,提取权重最大的位姿粒子及其对应的地图作为状态估计。仿真实验表明,SUPHD-SLAM相较于PHD-SLAM 1.0和PHD-SLAM 2.0,保证计算效率的同时,能够有效的提高机器人位姿和地图特征点的估计精度。 展开更多
关键词 无迹卡尔曼滤波 跟踪 机器人位姿 地图
在线阅读 下载PDF
高超目标强跟踪CKF自适应交互多模型跟踪算法 被引量:4
16
作者 罗亚伦 廖育荣 +1 位作者 李兆铭 倪淑燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2272-2283,共12页
高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分... 高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分析,在时间更新和量测更新的协方差矩阵中引入强跟踪算法的渐消因子,在线实时调整滤波增益,减小模型不匹配导致的滤波精度下降;在IMM的模型集中选择Singer模型、“当前”统计模型和Jerk模型,并针对模型扩维导致CKF算法中无法Cholesky分解的问题引入奇异值分解(SVD)算法;对IMM算法中马尔可夫矩阵提出自适应算法,通过模型似然函数值对转移概率进行自适应修正,增强匹配模型所占比例。仿真结果表明:所提算法跟踪收敛速度提高了约37.5%,跟踪精度提高了16.51%。 展开更多
关键词 高超目标 容积卡尔曼滤波 跟踪滤波 渐消因子 自适应交互多模型
在线阅读 下载PDF
强跟踪自适应CKF及其在动力定位中应用 被引量:6
17
作者 徐树生 李娟 +1 位作者 温利 龚丽农 《电机与控制学报》 EI CSCD 北大核心 2015年第2期101-108,共8页
针对容积卡尔曼滤波(cubature Kalman filter,CKF)在动力定位系统存在不良测量及船舶运动模型不确定时滤波精确度下降甚至发散的问题,提出一种强跟踪自适应CKF算法。利用新息协方差匹配原理,建立对系统的不良测量具有鲁棒性的自适应CKF... 针对容积卡尔曼滤波(cubature Kalman filter,CKF)在动力定位系统存在不良测量及船舶运动模型不确定时滤波精确度下降甚至发散的问题,提出一种强跟踪自适应CKF算法。利用新息协方差匹配原理,建立对系统的不良测量具有鲁棒性的自适应CKF。基于强跟踪滤波(strong tracking filter,STF)的理论框架和自适应CKF算法,构建强跟踪自适应CKF,该算法克服了标准强跟踪滤波的理论局限性,兼具STF与自适应CKF的优点,在系统存在模型不确定性及不良测量时具有良好的鲁棒性和滤波精确度。通过仿真验证了所建算法的有效性。 展开更多
关键词 跟踪滤波 容积卡尔曼滤波 自适应滤波 鲁棒性
在线阅读 下载PDF
强跟踪UKF粒子滤波算法 被引量:4
18
作者 杨丽华 葛磊 +1 位作者 李保林 黄海波 《计算机工程与设计》 北大核心 2015年第9期2432-2436,共5页
为解决传统的粒子滤波(particle filter,PF)及其改进算法对系统模型误差和状态突变的鲁棒性不强的问题,有学者提出具有较强鲁棒性的强跟踪扩展粒子滤波(strong tracking extended particle filter,STEPF),但其估计精度不高,需要计算雅... 为解决传统的粒子滤波(particle filter,PF)及其改进算法对系统模型误差和状态突变的鲁棒性不强的问题,有学者提出具有较强鲁棒性的强跟踪扩展粒子滤波(strong tracking extended particle filter,STEPF),但其估计精度不高,需要计算雅可比矩阵,实现较为复杂困难。针对这一情况,提出基于强跟踪无迹卡尔曼滤波(strong tracking unscented Kalman filter,STUKF)的强跟踪无迹粒子滤波(strong tracking unscented particle filter,STUPF)算法。在粒子先验分布更新阶段融入观测数据,以STUKF作为重要性密度函数,兼具UPF估计精度高和STUKF的鲁棒性且易于实现的优点,有效克服STEPF存在的缺点。数值仿真验证了所提算法的有效性。 展开更多
关键词 跟踪 扩展粒子滤波 无迹粒子滤波 卡尔曼滤波 鲁棒性
在线阅读 下载PDF
基于强跟踪UKF的航天器自主导航间接量测滤波算法 被引量:15
19
作者 杨文博 李少远 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2485-2491,共7页
针对广义卡尔曼滤波(extended Kalman filter,EKF)和无迹卡尔曼滤波(unscented Kalman filter,UKF)缺乏对系统异常的在线自适应调整能力、导致滤波器精度降低的问题,提出了一种将强跟踪滤波(strongtracking filter,STF)和UKF相结合的滤... 针对广义卡尔曼滤波(extended Kalman filter,EKF)和无迹卡尔曼滤波(unscented Kalman filter,UKF)缺乏对系统异常的在线自适应调整能力、导致滤波器精度降低的问题,提出了一种将强跟踪滤波(strongtracking filter,STF)和UKF相结合的滤波算法,并进一步采用部分状态信息作为间接观测量,同时量测噪声方差阵实时调整,从而避免了对观测方程求取Jacobi矩阵的过程,使滤波器的设计得到简化。将该算法应用于航天器自主导航系统中,仿真结果表明,该算法在系统出现突变或缓变异常时,能够迅速检测出异常,在保证较高估计精度的同时,提高了系统的可靠性。 展开更多
关键词 自主导航 跟踪滤波 无迹卡尔曼滤波 间接量测
在线阅读 下载PDF
改进的强跟踪自适应UKF算法及其在大方位失准角对准中的应用 被引量:4
20
作者 李明 柴洪洲 +2 位作者 靳凯迪 王敏 宋开放 《导航定位学报》 CSCD 2022年第6期165-172,共8页
针对无迹卡尔曼滤波(UKF)易受系统模型参数失配、状态变化情况影响,导致滤波精度下降甚至发散问题,提出一种改进的强跟踪自适应无迹卡尔曼滤波(STAUKF)。将强跟踪滤波(STF)与UKF滤波结合,并引入多重渐消因子,有针对性地自动调节状态估... 针对无迹卡尔曼滤波(UKF)易受系统模型参数失配、状态变化情况影响,导致滤波精度下降甚至发散问题,提出一种改进的强跟踪自适应无迹卡尔曼滤波(STAUKF)。将强跟踪滤波(STF)与UKF滤波结合,并引入多重渐消因子,有针对性地自动调节状态估计均方误差阵。根据新息向量构造检验门限函数,提高了滤波对有用历史信息的利用率。进一步引入简化的萨格-胡萨(Sage-Husa)滤波,自适应调节量测噪声方差,较传统Sage-Husa算法减少了计算量,提高了算法的鲁棒性。最后采用海上实测数据进行实验验证,并与UKF滤波、强跟踪UKF滤波(STUKF)比较。结果表明,该算法优势明显,有效缩短了大方位失准角误差收敛时间,提高了组合导航精度。较UKF滤波方位角收敛时间缩短了93%,东、北、天方向速度均方根误差分别降低89%、93%和82%,位置均方根误差分别降低98%、94%和97%。 展开更多
关键词 跟踪滤波 自适应 无迹卡尔曼滤波 多重渐消因子 组合导航
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部