期刊文献+
共找到497篇文章
< 1 2 25 >
每页显示 20 50 100
基于自适应广义回归神经网络的链路质量评估 被引量:6
1
作者 舒坚 高素 陈宇斌 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2662-2672,共11页
为选择合适的链路质量参数,进一步提高链路质量评估的性能和泛化能力、降低时间复杂度,确定链路质量参数的备选集M CS={μ,r,σ2},其中μ={μlqi,μrssi,μsnr},r={r lqi,r rssi,r snr},σ2={σ2 lqi,σ2 rssi,σ2 snr};提出包裹式链路... 为选择合适的链路质量参数,进一步提高链路质量评估的性能和泛化能力、降低时间复杂度,确定链路质量参数的备选集M CS={μ,r,σ2},其中μ={μlqi,μrssi,μsnr},r={r lqi,r rssi,r snr},σ2={σ2 lqi,σ2 rssi,σ2 snr};提出包裹式链路质量参数选取算法,采用自适应广义回归神经网络(adaptive general regression neural network,AGRNN)评价各备选子集的重要性,选择链路质量参数;借助广义回归神经网络(general regression neural network,GRNN)在分类以及时间上的优势,提出基于AGRNN的链路质量评估模型,该模型为每个链路质量参数分配不同的光滑因子,采用误差反向传播的思想对其进行自适应修正;采用准确率、召回率、泛化误差和计算时间评价链路质量评估模型.室内、公园和公路场景下的实验表明:与基于多项式法、随机森林、支持向量分类器的链路质量评估模型相比,基于AGRNN的链路质量评估模型具有更优的评估性能和更好的泛化能力以及更低的时间复杂度. 展开更多
关键词 无线传感器网络 链路质量评估 包裹式参数选取算法 自适应广义回归神经网络
在线阅读 下载PDF
基于广义回归神经网络的钻柱涡动识别
2
作者 朱海峰 何英明 +3 位作者 李亚峰 王名春 项明 薛启龙 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期80-89,97,共11页
为及时识别井下钻具涡动,降低钻井风险,利用时频分析技术标记了实际钻井信号中典型的涡动信号,分析了钻具涡动时正交三轴加速度计信号之间的关系,将加速度信号间相关系数作为涡动识别特征,建立了基于广义回归神经网络(General Regressio... 为及时识别井下钻具涡动,降低钻井风险,利用时频分析技术标记了实际钻井信号中典型的涡动信号,分析了钻具涡动时正交三轴加速度计信号之间的关系,将加速度信号间相关系数作为涡动识别特征,建立了基于广义回归神经网络(General Regression Neural Network,GRNN)的井下钻柱涡动识别模型。研究结果表明,所建涡动识别模型的综合识别精度为91.8%,可以在大量振动数据中快速准确识别出涡动信号。研究结果可为建立井下振动识别系统提供技术方法。 展开更多
关键词 振动信号 钻柱涡动 模式识别 广义回归神经网络
在线阅读 下载PDF
基于广义回归神经网络的光纤光栅传感器解调技术研究
3
作者 夏翔 李贤良 +3 位作者 潘华 闫东 张晓锋 张云辉 《电测与仪表》 北大核心 2025年第2期62-68,共7页
针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高... 针对现有光纤光栅传感器波长峰值检测方法存在的误差大、稳定性差等问题,提出了一种基于广义回归神经网络和改进粒子群优化算法的光纤光栅传感器波长峰值检测方法。通过改进的粒子群优化算法对广义回归神经网络的平滑因子进行寻优,提高广义回归神经网络中心波长计算的准确性。通过试验分析所提方法在不同中心波长下的性能。结果表明,所提方法比传统方法更稳定,解调误差更小,整体中心波长绝对偏差降低了35.90%和24.24%,相对波长变化偏差降低了20.00%和13.04%。 展开更多
关键词 光纤光栅 峰值检测 中心波长 粒子群优化算法 广义回归神经网络
在线阅读 下载PDF
广义回归神经网络修正GNSS垂向坐标时间序列环境负荷效应 被引量:1
4
作者 高菡 匡翠林 楚彬 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期3357-3366,共10页
环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入... 环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入数据驱动的广义回归神经网络(Generalized Regression Neural Network,GRNN)方法改善环境负荷修正效果.以川滇地区GNSS测站的垂向坐标时间序列为研究对象,首先基于变分贝叶斯独立分量分析(Variational Bayesian Independent Component Analysis,vbICA)技术分离坐标序列,分析得到周期性分量,发现大气及陆地储水负荷是引起测站坐标发生季节性变化的重要原因.然后通过GRNN建立与大气及陆地储水相关的环境因素数据和坐标时间序列数据之间的关联,进而消除坐标时间序列中两种环境负荷的影响.经数据驱动的GRNN建模修正大气及陆地储水负荷影响后,各测站坐标残差序列的RMS值平均降低了21.56%,而采用传统的物理模型方法修正后平均降低幅度仅为9.29%,可认为基于GRNN方法的改正效果更好.另外顾及地下温度、冰浓度、比湿、降雨率四种气候因素的影响建立GRNN模型,结果表明地下温度因素对川滇地区GNSS测站垂向坐标影响稍大. 展开更多
关键词 GNSS坐标时间序列 环境负荷 广义回归神经网络 数据驱动
在线阅读 下载PDF
基于木材振动特性的月琴声学品质广义回归神经网络预测模型 被引量:1
5
作者 杨扬 《森林工程》 北大核心 2024年第4期160-167,共8页
泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价... 泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价以及制备月琴的共鸣板信息,提出月琴音质的预测模型。在180组数据中,随机抽取135组数据进行训练,其余45组数据进行验证。使用主成分分析方法、GRNN建立月琴声学质量评价模型,并进行仿真预测。结果表明,基于共鸣板的振动特性,利用Matlab仿真可以实现对月琴音质的预测,预测的准确率可达到91.41%。此外,研究还表明,泡桐木共鸣板的动态弹性模量、声辐射阻尼系数、弹性模量、剪切模量比、声阻抗,损耗角正切和声转化率等参数均是影响其制备成品月琴声学质量的重要因素。 展开更多
关键词 广义回归神经网络 主成分分析 声学品质 振动特性 共鸣板 木材 民族乐器
在线阅读 下载PDF
基于自适应变异果蝇优化算法和广义回归神经网络的布里渊散射谱特征提取 被引量:9
6
作者 张燕君 刘文哲 +1 位作者 付兴虎 毕卫红 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第10期2916-2923,共8页
针对布里渊光时域反射光纤传感系统散射谱的高精度特征提取的要求,提出了一种基于自适应变异果蝇优化算法和广义回归神经网络的布里渊散射谱特征提取算法。不仅利用了广义回归神经网络在逼近能力、学习速度、模型的泛化等方面具有的优势... 针对布里渊光时域反射光纤传感系统散射谱的高精度特征提取的要求,提出了一种基于自适应变异果蝇优化算法和广义回归神经网络的布里渊散射谱特征提取算法。不仅利用了广义回归神经网络在逼近能力、学习速度、模型的泛化等方面具有的优势,而且采用搜索能力较强的自适应变异果蝇优化算法进一步增强了神经网络的学习能力,从而提高了布里渊散射谱的拟合度和频移提取的准确度。在布里渊散射谱中心频率为11.213GHz,线宽为40~50,30~60和20~70 MHz的散射谱白噪声实验模型中,将新算法分别与基于有限元分析的Levenberg-Marquardt拟合法、粒子群优化和拉凡格式混合拟合法、最小二乘法进行预测比较,新算法获得的最大拟合频移误差为0.4MHz,平均拟合度为0.991 2,均方根误差为0.024 1。仿真结果表明所提出的算法拟合度较好,绝对误差小。因此,将此算法用于基于布里渊光时域反射的分布式光纤传感系统,可有效提高布里渊散射谱的拟合度和频移提取的准确度。 展开更多
关键词 分布式光纤传感 布里渊散射谱 自适应变异果蝇算法 广义回归神经网络
在线阅读 下载PDF
基于自适应模糊广义回归神经网络的区域火灾数据推理预测 被引量:3
7
作者 金杉 金志刚 《计算机应用》 CSCD 北大核心 2015年第5期1499-1504,共6页
针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法。在网络输入... 针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法。在网络输入层使用改进模糊C-聚类算法,对初始数据进行权重修正,减少了噪声和孤立点对算法造成的影响,提高了预测值的逼近精度;引入自适应函数优化GRNN算法,调整迭代收敛的扩展速度、变化步长,找到全局最优解,改善了过早收敛问题,提高了搜索效率。实验结果表明,该算法代入已确定火灾损失数据,解决了依赖不稳定探测数据问题,并且具有良好的泛化能力、非线性逼近能力。 展开更多
关键词 自适应 模糊 广义回归神经网络 区域火灾数据 预测
在线阅读 下载PDF
综合半参数变系数和GRNN神经网络的对流层延迟模型
8
作者 潘雄 张思莹 +3 位作者 李涛 黄伟凯 金丽宏 张红星 《地球物理学报》 北大核心 2025年第1期54-65,共12页
对流层延迟是卫星导航定位的主要误差源之一,精准地预测对流层延迟对于提高全球导航卫星系统的定位精度至关重要.本文将半参数变系数模型(Semiparametric Varying Coefficient,Semi-VC)引入到对流层延迟建模中,构建一种综合半参数变系... 对流层延迟是卫星导航定位的主要误差源之一,精准地预测对流层延迟对于提高全球导航卫星系统的定位精度至关重要.本文将半参数变系数模型(Semiparametric Varying Coefficient,Semi-VC)引入到对流层延迟建模中,构建一种综合半参数变系数与神经网络的新型经验对流层模型.首先,将频谱分析提取的主周期信号作为参数分量,将剩余周期信号和其他误差归入到非参数分量,建立半参数对流层天顶延迟模型(Semiparametric tropospheric zenith delay model,Semi);其次,为了减弱核函数和窗宽参数选择对估计值精度的影响,利用泰勒展式将参数分量展开到一次项,将窗宽参数与参数解算综合考虑,扩充为半参数变系数模型,综合核估计和最小二乘法,利用三步估计方法得到了参数分量和非参数分量的估计值及观测值的拟合残差;然后,引入广义回归神经网络模型(Generalized Regression Neural Network,GRNN)对拟合残差进行补偿建模,利用贝叶斯优化算法(Bayesian Optimization Algorithm,BOA)进行超参数选择,进一步提升混合模型对ZTD(Zenith Tropospheric Delay)的估计精度.最后,利用陆态网络2020至2022年的210个GNSS(Global Navigation Satellite System)测站的实测数据,对本文提出的半参数变系数与广义回归神经网络组合模型(Semiparametric Varying Coefficient-GRNN,Semi-VC-GRNN)与常用模型从系统误差分离和时空分布特性方面进行了对比分析.结果表明,Semi-VC-GRNN模型在2022年210个测站的测试中平均RMSE(Root Mean Square Error)和平均Bias分别为16.8 mm和0.4 mm,平均RMSE相较于5°分辨率和1°分辨率下的GPT3模型分别提升51.25%和50.07%. 展开更多
关键词 天顶对流层延迟 半参数变系数模型 广义回归神经网络模型 陆态网络
在线阅读 下载PDF
广义回归神经网络在煤灰熔点预测中的应用 被引量:31
9
作者 周昊 郑立刚 +1 位作者 樊建人 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第11期1479-1482,共4页
为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实... 为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实验值的最大相对误差为2.81%,而反向传播神经网络(BPNN)预测煤灰熔点的相对误差为3.62%.由于GRNN可应用于小样本问题的学习,GRNN比BPNN对煤灰熔点具有更好的预测和泛化能力.GRNN具有设计简单与收敛快的优点,并提高了实时处理与反映最新运行工况参数的预测能力. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 GRNN
在线阅读 下载PDF
基于萤火虫算法?广义回归神经网络的光伏发电功率组合预测 被引量:34
10
作者 王昕 黄柯 +4 位作者 郑益慧 李立学 邵凤鹏 贾立凯 徐清山 《电网技术》 EI CSCD 北大核心 2017年第2期455-461,共7页
随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取... 随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取以简化模型输入变量的维数,然后将提取的第一主成分结合灰色关联度来筛选相似日样本,接着将样本分别带入最小二乘支持向量机、改进BP网络2种单一模型进行2次预测。第1次预测作为相似日预测,用来训练权重系数,训练方法是萤火虫算法优化的广义回归神经网络;第2次预测是待预测日的预测。仿真结果验证了所提模型的有效性。 展开更多
关键词 主成分分析法 灰色关联度 萤火虫算法 广义回归神经网络
在线阅读 下载PDF
基于广义回归神经网络的货运量预测 被引量:72
11
作者 赵闯 刘凯 李电生 《铁道学报》 EI CAS CSCD 北大核心 2004年第1期12-15,共4页
根据货运量形成的原因 ,分析了货运量和相关影响因素之间的关系以及货运量预测的特点。在此基础上 ,建立货运量预测的广义回归神经网络 (GeneralRegressionNeuralNetwork ,GRNN)模型 ,并以我国 1981~ 2 0 0 1年的货运量和相关经济指标... 根据货运量形成的原因 ,分析了货运量和相关影响因素之间的关系以及货运量预测的特点。在此基础上 ,建立货运量预测的广义回归神经网络 (GeneralRegressionNeuralNetwork ,GRNN)模型 ,并以我国 1981~ 2 0 0 1年的货运量和相关经济指标的历史统计数据作为学习样本 ,通过拟合训练和外推预测分析 。 展开更多
关键词 货运量 预测 广义回归神经网络
在线阅读 下载PDF
基于广义回归神经网络的时间序列预测研究 被引量:49
12
作者 冯志鹏 宋希庚 +2 位作者 薛冬新 郑爱萍 孙玉明 《振动.测试与诊断》 EI CSCD 2003年第2期105-109,共5页
介绍了广义回归神经网络的基本理论 ,提出了应用 BIC准则确定输入神经元数目的方法 ,将其应用于大型旋转机械振动状态时间序列的单步和多步预测 ,与传统的采用误差反向传播学习算法的三层前馈感知器网络 (BP神经网络 )的预测结果进行对... 介绍了广义回归神经网络的基本理论 ,提出了应用 BIC准则确定输入神经元数目的方法 ,将其应用于大型旋转机械振动状态时间序列的单步和多步预测 ,与传统的采用误差反向传播学习算法的三层前馈感知器网络 (BP神经网络 )的预测结果进行对比。结果表明 ,该网络的预测性能优于后者 ,即使样本数据稀少 。 展开更多
关键词 广义回归神经网络 时间序列预测 平滑参数 网络结构 旋转机械 振动状态
在线阅读 下载PDF
应用广义回归神经网络进行土壤空间变异研究 被引量:55
13
作者 沈掌泉 周斌 +1 位作者 孔繁胜 John S.Bailey 《土壤学报》 CAS CSCD 北大核心 2004年第3期471-475,共5页
关键词 广义回归神经网络 土壤性质 空间变异 空间插值技术 地统计学
在线阅读 下载PDF
基于广义回归神经网络与遗传算法的煤灰熔点优化 被引量:9
14
作者 石喜光 郑立刚 +3 位作者 周昊 陈习珍 邱坤赞 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第8期1189-1192,1242,共5页
考虑固态和液态排渣锅炉对煤灰熔点的不同要求,采用广义回归神经网络建立了煤灰软化温度模型.神经网络的输入变量为7个,即煤灰中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2、Na2O&K2O的质量分数.以煤灰软化温度作为目标函数,采用遗传算法... 考虑固态和液态排渣锅炉对煤灰熔点的不同要求,采用广义回归神经网络建立了煤灰软化温度模型.神经网络的输入变量为7个,即煤灰中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2、Na2O&K2O的质量分数.以煤灰软化温度作为目标函数,采用遗传算法寻优计算获得当煤灰软化温度最高和最低时煤灰中氧化物的组成.广义回归神经网络仅需30个训练样本,最大和平均相对误差分别为21.8%和1.55%.优化结果表明,掺烧高钙煤或者向燃煤中添加石灰石等富含Ca的原料可以降低煤灰熔点;而增加Al2O3的质量分数可以提高煤灰熔点. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 遗传算法
在线阅读 下载PDF
广义回归神经网络模型在短期电力负荷预测中的应用研究 被引量:32
15
作者 谷志红 牛东晓 王会青 《中国电力》 CSCD 北大核心 2006年第4期11-14,共4页
介绍了广义回归神经网络(GRNN)的基本理论,指出其回归的实质就是对平滑参数的优化。考虑到常规差分进化算法容易“早熟,”全局寻优效率偏低,提出了基于优进策略的差分进化算法,利用种群繁衍的有用信息改进子代分布,并引入确定性寻优操作... 介绍了广义回归神经网络(GRNN)的基本理论,指出其回归的实质就是对平滑参数的优化。考虑到常规差分进化算法容易“早熟,”全局寻优效率偏低,提出了基于优进策略的差分进化算法,利用种群繁衍的有用信息改进子代分布,并引入确定性寻优操作,实现了高效全局搜优。以推广能力作为优化目标,所建的GRNN有很强的非线性拟合能力和优良的预报性能,将其成功地为短期电力负荷预测建模,获得了满意的预测结果。 展开更多
关键词 负荷预测 广义回归神经网络 差分进化算法 优进策略
在线阅读 下载PDF
基于广义回归神经网络的边坡稳定性评价 被引量:22
16
作者 兰海涛 李谦 韩春雨 《岩土力学》 EI CAS CSCD 北大核心 2009年第11期3460-3463,共4页
边坡失稳是比较常见的地质灾害,判定其稳定性的方法很多,在使用过程中也暴露出了这些方法的缺陷。针对这些问题,构建了适合于边坡稳定性评价的广义回归神经网络模型,并运用Matlab的神经网络工具箱进行了分析和计算,使用了相关数据来训... 边坡失稳是比较常见的地质灾害,判定其稳定性的方法很多,在使用过程中也暴露出了这些方法的缺陷。针对这些问题,构建了适合于边坡稳定性评价的广义回归神经网络模型,并运用Matlab的神经网络工具箱进行了分析和计算,使用了相关数据来训练和测试该模型的可靠性和可行性。结果表明,广义回归神经网络模型在使用过程中需选择合适的光滑因子,而所得出的数据与实际结果较为相符,解决了之前使用的BP神经网络模型的缺点,具有很好的工程运用前景。 展开更多
关键词 广义回归神经网络 边坡稳定性 光滑因子 神经网络模型
在线阅读 下载PDF
基于广义回归神经网络的油纸绝缘变压器的寿命预测 被引量:20
17
作者 林喆 兰生 张宇航 《高压电器》 CAS CSCD 北大核心 2015年第2期125-130,共6页
文中基于广义回归神经网络(GRNN)技术挖掘数据变化规律,构建了GRNN神经网络预测模型,运用该模型对油纸绝缘变压器进行寿命预测。将变压器绝缘纸老化过程中生成的特征产物如糠醛、CO2和CO的质量分数,以及相关时间参量作为模型输入。将所... 文中基于广义回归神经网络(GRNN)技术挖掘数据变化规律,构建了GRNN神经网络预测模型,运用该模型对油纸绝缘变压器进行寿命预测。将变压器绝缘纸老化过程中生成的特征产物如糠醛、CO2和CO的质量分数,以及相关时间参量作为模型输入。将所采集的多组油纸绝缘变压器的测试样本作为基础数据,运用该模型对相应的变压器进行寿命预测。结果表明,模型寿命预测的输出值与实际值基本一致,从而验证了模型的合理性,这对监测绝缘材料老化状态的进一步研究具有现实意义。 展开更多
关键词 广义回归神经网络 油纸绝缘变压器 寿命预测
在线阅读 下载PDF
广义回归神经网络在燃气轮机排气温度传感器故障检测中的应用 被引量:20
18
作者 陈娇 王永泓 翁史烈 《中国电机工程学报》 EI CSCD 北大核心 2009年第32期92-97,共6页
燃气轮机电厂实际运行中,涡轮排气温度是一个重要的热参数,其传感器的状态直接影响到排气温度观测值。应用广义回归神经网络(general regression neural network,GRNN)构建了涡轮排气温度传感器状态自动检测用的网络,并从网络的最优化... 燃气轮机电厂实际运行中,涡轮排气温度是一个重要的热参数,其传感器的状态直接影响到排气温度观测值。应用广义回归神经网络(general regression neural network,GRNN)构建了涡轮排气温度传感器状态自动检测用的网络,并从网络的最优化设计、误差控制及网络实际效果检测等方面进行了分析和研究。同时,提出传感器状态判断阈值的建立方法。以某厂实际使用的排气温度传感器为实例进行了验证,证明所建立的GRNN网络对机组传感器的状态检测有较好的工程应用价值。 展开更多
关键词 燃气轮机电厂 涡轮排气温度 传感器 广义回归 神经网络 阈值
在线阅读 下载PDF
基于文化萤火虫算法-广义回归神经网络的船舶交通流量预测 被引量:14
19
作者 薛晗 邵哲平 +1 位作者 潘家财 张锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2020年第4期421-429,共9页
为了给海事部门提供科学准确的船舶交通流量预测,本文提出一种基于文化萤火虫算法(CFA)来优化广义回归神经网络(GRNN)的算法(CFA-GRNN),对船舶交通流量进行预测分析.介绍了基于自动识别系统(AIS)的航道交通流量统计方法.利用快速排斥试... 为了给海事部门提供科学准确的船舶交通流量预测,本文提出一种基于文化萤火虫算法(CFA)来优化广义回归神经网络(GRNN)的算法(CFA-GRNN),对船舶交通流量进行预测分析.介绍了基于自动识别系统(AIS)的航道交通流量统计方法.利用快速排斥试验和跨立试验来判断船舶轨迹是否穿过航道某一断面的观测线,并将AIS数据中的经纬度数据转换为墨卡托平面坐标系数据.研究了GRNN的实现原理,CFA以GRNN输出均方差为适应度函数,以GRNN的输入层和隐含层中的权值、隐含层和输出层中的权值、隐含层的阈值及输出层的阈值为编码进行优化,进化目标是得到最合适、最优的神经网络结构.利用AIS收集统计到并经过预处理后的数据,应用CFA-GRNN对舟山螺头通航的船舶进行交通流量预测,并对试验结果和误差进行了统计分析.结果表明:CFA-GRNN与GRNN和萤火虫优化广义回归神经网络相比,泛化性能好,不易陷入局部最优,预测结果精度更高.本研究对船舶交通流量进行预测分析有着十分重要的理论和实际意义. 展开更多
关键词 船舶交通流量预测 广义回归神经网络 文化算法 萤火虫算法
在线阅读 下载PDF
基于广义回归神经网络的COD在线检测方法研究 被引量:13
20
作者 张荣标 冯俊 谢志超 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第11期2357-2361,共5页
采用化学分析法检测污水中COD值的现有技术,检测过程复杂、测取速度慢,难以实现在线检测。根据紫外光谱对有机污染物的敏感特性,结合神经网络对非线性模型的良好辨识能力,研究出一种COD快速检测的方法。采用多波长在线扫描技术获取被测... 采用化学分析法检测污水中COD值的现有技术,检测过程复杂、测取速度慢,难以实现在线检测。根据紫外光谱对有机污染物的敏感特性,结合神经网络对非线性模型的良好辨识能力,研究出一种COD快速检测的方法。采用多波长在线扫描技术获取被测污水COD的光谱数据,通过特征提取简化样本数据,运用广义回归神经网络(GRNN)建立COD值预测模型。采用多种建模方法对具有不同COD值的水样光谱数据进行分析比较结果表明:GRNN比BP网络和多元线性回归方法建模具有更好的相关性、更强的泛化能力和更高的检测精度。 展开更多
关键词 广义回归神经网络 特征提取 紫外光谱 COD
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部