期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VFFRLS-ASRRF的锂离子电池SOC估计
1
作者
李美丽
刘昊
冯子亮
《电池》
北大核心
2025年第3期554-560,共7页
精确建模及高精度估计荷电状态(SOC)是锂离子电池应用的关键。结合可变遗忘因子递推最小二乘(VFFRLS)与自适应平方根秩滤波(ASRRF)算法,进行SOC估计。ASRRF算法能处理模型的非线性和测量噪声,通过捕获电池的连续时间动态来提高估计精度...
精确建模及高精度估计荷电状态(SOC)是锂离子电池应用的关键。结合可变遗忘因子递推最小二乘(VFFRLS)与自适应平方根秩滤波(ASRRF)算法,进行SOC估计。ASRRF算法能处理模型的非线性和测量噪声,通过捕获电池的连续时间动态来提高估计精度。在MATLAB环境中仿真,比较秩滤波(RF)和ASRRF算法在相似噪声下的性能。VFFRLS-ASRRF算法在联邦城市驾驶工况(FUDS)和US06工况下,SOC估计精度分别为1.8%和1.3%,均优于VFFRLS-RF算法。
展开更多
关键词
锂离子电池
荷电状态(SOC)
可变遗忘因子递推最小二乘(VFFRLS)
自适应
平方根
秩
滤波
(
asrrf
)
在线阅读
下载PDF
职称材料
题名
基于VFFRLS-ASRRF的锂离子电池SOC估计
1
作者
李美丽
刘昊
冯子亮
机构
河北科技工程职业技术大学汽车工程系
出处
《电池》
北大核心
2025年第3期554-560,共7页
基金
河北省高等学校科学技术研究项目(QN2023116)。
文摘
精确建模及高精度估计荷电状态(SOC)是锂离子电池应用的关键。结合可变遗忘因子递推最小二乘(VFFRLS)与自适应平方根秩滤波(ASRRF)算法,进行SOC估计。ASRRF算法能处理模型的非线性和测量噪声,通过捕获电池的连续时间动态来提高估计精度。在MATLAB环境中仿真,比较秩滤波(RF)和ASRRF算法在相似噪声下的性能。VFFRLS-ASRRF算法在联邦城市驾驶工况(FUDS)和US06工况下,SOC估计精度分别为1.8%和1.3%,均优于VFFRLS-RF算法。
关键词
锂离子电池
荷电状态(SOC)
可变遗忘因子递推最小二乘(VFFRLS)
自适应
平方根
秩
滤波
(
asrrf
)
Keywords
Li-ion battery
state of charge(SOC)
variable forgetting factor recursive least squares(VFFRLS)
adaptive square root rank filter(
asrrf
)
分类号
TM912.9 [电气工程—电力电子与电力传动]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VFFRLS-ASRRF的锂离子电池SOC估计
李美丽
刘昊
冯子亮
《电池》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部