期刊文献+
共找到177篇文章
< 1 2 9 >
每页显示 20 50 100
基于自适应差分进化算法优化极限学习机的球磨机料位测量 被引量:6
1
作者 王芳 续欣莹 阎高伟 《仪表技术与传感器》 CSCD 北大核心 2015年第6期143-145,共3页
极限学习机在实际应用中具有学习速度快、训练误差小的优点,但其稳定性与泛化能力却较差。针对其缺点,将自适应差分进化算法引入极限学习机对其改进,利用自适应差分进化算法的全局寻优能力,求取训练误差较小时极限学习机的输入权值矩阵... 极限学习机在实际应用中具有学习速度快、训练误差小的优点,但其稳定性与泛化能力却较差。针对其缺点,将自适应差分进化算法引入极限学习机对其改进,利用自适应差分进化算法的全局寻优能力,求取训练误差较小时极限学习机的输入权值矩阵以及隐含层偏置矩阵,从而优化极限学习机。将优化后的极限学习机应用于球磨机料位测量,实验结果表明,优化后的极限学习机与传统极限学习机相比具有较高的测量精度和较好的稳定性。 展开更多
关键词 自适应差分进化算法 极限学习 测试误差 球磨料位测量
在线阅读 下载PDF
基于自适应差分进化算法优化极限学习机的干旱预测方法 被引量:7
2
作者 周靖楠 刘振男 《水电能源科学》 北大核心 2018年第6期6-9,共4页
针对极限学习机在实际应用时随机选取初始权值与阈值易导致其稳定性弱及泛化能力差的问题,利用自适应差分进化算法对其进行改进,构建了自适应差分进化极限学习机预测模型,并选用海表异常温度作为该模型的输入因子,对研究区域的干旱进行... 针对极限学习机在实际应用时随机选取初始权值与阈值易导致其稳定性弱及泛化能力差的问题,利用自适应差分进化算法对其进行改进,构建了自适应差分进化极限学习机预测模型,并选用海表异常温度作为该模型的输入因子,对研究区域的干旱进行预测。结果表明,以海表异常温度作为模型的输入因子,应用极限学习机能有效地进行干旱预测,通过自适应差分进化算法优化的极限学习机应用于干旱预测,其精度与稳定性均有所提高。 展开更多
关键词 极限学习 适应差分进化算法 干旱 SSTA 预报因子
在线阅读 下载PDF
一种融合反向学习机制与差分进化策略的蛇优化算法 被引量:3
3
作者 占宏祥 汪廷华 张昕 《郑州大学学报(理学版)》 CAS 北大核心 2024年第6期25-31,共7页
蛇优化(snake optimizer,SO)算法存在前期收敛速度慢和易陷入局部最优的问题,为此提出一种融合反向学习机制与差分进化策略的改进蛇优化(improved snake optimizer,ISO)算法。反向学习机制可提高种群质量,以提升算法寻优速度;差分进化... 蛇优化(snake optimizer,SO)算法存在前期收敛速度慢和易陷入局部最优的问题,为此提出一种融合反向学习机制与差分进化策略的改进蛇优化(improved snake optimizer,ISO)算法。反向学习机制可提高种群质量,以提升算法寻优速度;差分进化策略有助于算法精准寻优,降低算法陷入局部最优的几率。在10个基准测试函数上的实验结果表明,ISO算法拥有更高的寻优精度和更快的收敛速率。将其应用于支持向量机(support vector machine,SVM)的参数选取中,进一步验证了ISO算法的有效性。 展开更多
关键词 蛇优化算法 差分进化 反向学习 参数优化 支持向量
在线阅读 下载PDF
基于复合差分进化算法与极限学习机的高炉铁水硅含量预报 被引量:17
4
作者 蒋朝辉 尹菊萍 +1 位作者 桂卫华 阳春华 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第8期1089-1095,共7页
针对铁水硅含量无法直接在线检测的问题,本文提出了一种基于优化极限学习机(ELM)的高炉铁水硅含量预报方法.该方法利用复合差分进化算法(CoDE)的快速定位全局最优解的能力来优化极限学习机的输入权值和隐层节点阈值,在此基础上建立了基... 针对铁水硅含量无法直接在线检测的问题,本文提出了一种基于优化极限学习机(ELM)的高炉铁水硅含量预报方法.该方法利用复合差分进化算法(CoDE)的快速定位全局最优解的能力来优化极限学习机的输入权值和隐层节点阈值,在此基础上建立了基于复合差分进化算法优化极限学习机(CoDE-ELM)的高炉铁水硅含量预报模型.以某钢铁厂2650 m^3的高炉为例,利用实际采集数据进行模型检验,结果表明,当绝对误差小于0.1时,铁水硅含量的预报命中率为89%,均方根误差为0.047,实际目标值序列与预报值序列的相关系数为0.851.所建模型的预报结果优于支持向量机(SVM)、前馈神经网络(BP-NN)、极限学习机以及差分优化极限学习机(DE-ELM),对高炉炉温的实际调控具有较好的指导意义. 展开更多
关键词 铁水硅含量 预报模型 复合差分 极限学习
在线阅读 下载PDF
基于快速极限学习机和差分进化的机场噪声预测模型 被引量:6
5
作者 徐涛 郭威 吕宗磊 《电子与信息学报》 EI CSCD 北大核心 2016年第6期1512-1518,共7页
该文针对传统机场噪声预测模型存在的建模成本高、实用性差的不足,引入时间序列相空间重构理论,提出一种新的基于快速极限学习机和差分进化算法的机场噪声一体化预测模型。该模型利用相空间重构理论对机场噪声时间序列进行重构,并使用... 该文针对传统机场噪声预测模型存在的建模成本高、实用性差的不足,引入时间序列相空间重构理论,提出一种新的基于快速极限学习机和差分进化算法的机场噪声一体化预测模型。该模型利用相空间重构理论对机场噪声时间序列进行重构,并使用快速极限学习机对重构的相空间矢量进行学习建模,同时采用改进的差分进化算法实现对重构参数和模型参数的同步优化选择,整个建模过程简洁高效,无需人工干预。实验结果表明,该一体化预测模型能较好地跟踪机场噪声的变化趋势,且具有较同类模型更小的预测误差。 展开更多
关键词 场噪声预测 快速极限学习 差分进化 相空间重构
在线阅读 下载PDF
基于小波核主成分分析和差分进化优化极限学习机的入侵检测 被引量:4
6
作者 朱永胜 董燕 慕昆 《计算机应用与软件》 CSCD 北大核心 2014年第5期305-307,333,共4页
针对网络入侵检测,提出一种基于小波核主成分分析和差分进化极限学习机相结合的方法。首先采用核主成分分析法对原始数据进行非线性降维处理,为了进一步提高核PCA的非线性映射能力,引用小波核函数作为核PCA的核函数。然后采用极限学习... 针对网络入侵检测,提出一种基于小波核主成分分析和差分进化极限学习机相结合的方法。首先采用核主成分分析法对原始数据进行非线性降维处理,为了进一步提高核PCA的非线性映射能力,引用小波核函数作为核PCA的核函数。然后采用极限学习机对处理后的数据进行分类识别,针对初始权值随机选择造成极限学习机性能不稳定的问题,采用差分进化算法来获得最优的初始权值。实验结果表明该算法可以有效提高入侵检测的识别率,降低误报率和漏报率。 展开更多
关键词 入侵检测 小波核主成分分析 极限学习 差分进化
在线阅读 下载PDF
基于差分进化和极限学习机的并发查询性能预测 被引量:5
7
作者 陈于思 孙林夫 《计算机集成制造系统》 EI CSCD 北大核心 2019年第9期2291-2304,共14页
为应对数据规模持续增长、查询负载多样化和复杂化的趋势为云服务提供商资源管理带来的挑战,提出一种基于差分进化(DE)和极限学习机(ELM)的方法DE-ELM,对并发查询的性能进行预测。极限学习机用于预测并发查询性能,差分进化算法用于同步... 为应对数据规模持续增长、查询负载多样化和复杂化的趋势为云服务提供商资源管理带来的挑战,提出一种基于差分进化(DE)和极限学习机(ELM)的方法DE-ELM,对并发查询的性能进行预测。极限学习机用于预测并发查询性能,差分进化算法用于同步优化特征子集和极限学习机结构。该方法仅使用查询编译时信息、无需事先指定特征数目,也无需事先就查询交互的性质、数据库系统的内部运作机制做出先验假设。在合成数据集和真实数据集上进行了详细的实验研究,以评估极限学习机的训练效果、同步优化特征子集和极限学习机结构的效果。结果表明,DE-ELM的平均预测精度高于80%,在一定程度上证明了所提方法的可行性和有效性。 展开更多
关键词 并发查询 性能预测 极限学习 差分进化 特征选择
在线阅读 下载PDF
基于随机邻域策略和广义反向学习的自适应差分进化算法 被引量:10
8
作者 吴文海 郭晓峰 +1 位作者 周思羽 高丽 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期1928-1942,共15页
全局探索和局部开发能力之间的平衡以及对控制参数的整定是影响差分进化(differential evolution,DE)算法性能的主要因素。针对这两个问题,提出一种基于随机邻域策略和广义反向学习的自适应DE算法。首先,在每一代进化过程中,算法从当前... 全局探索和局部开发能力之间的平衡以及对控制参数的整定是影响差分进化(differential evolution,DE)算法性能的主要因素。针对这两个问题,提出一种基于随机邻域策略和广义反向学习的自适应DE算法。首先,在每一代进化过程中,算法从当前种群为每一个体随机选择相应的邻域,其中最优个体作为基向量执行变异操作,邻域中个体数量随进化动态更新。其次,采用基于历史存档的自适应参数整定方法,进化进程中根据“精英”信息动态更新算法各参数。最后,在初始化和每一代进化结束阶段,执行基于广义反向学习策略的种群初始化和种群“代跳”操作。通过基于27个标准测试函数的3组仿真实验,验证了所提算法具有寻优精度高、收敛速度快、鲁棒性强的优点。 展开更多
关键词 差分进化算法 邻域 自适应参数 广义反向学习
在线阅读 下载PDF
基于差分进化极限学习机的电力系统暂态稳定评估方法 被引量:12
9
作者 李向伟 刘思言 高昆仑 《科学技术与工程》 北大核心 2020年第1期213-217,共5页
电力系统暂态稳定性的破坏可以对电力系统的安全稳定运行产生严重冲击,准确、快速地暂稳评估方法能够提高电力系统的安全防御能力。极限学习机由于其速度快、泛化性能好被应用到电力系统暂态稳定评估中。为了提高极限学习机的评估性能,... 电力系统暂态稳定性的破坏可以对电力系统的安全稳定运行产生严重冲击,准确、快速地暂稳评估方法能够提高电力系统的安全防御能力。极限学习机由于其速度快、泛化性能好被应用到电力系统暂态稳定评估中。为了提高极限学习机的评估性能,利用基于差分进化算法的优化方法和序列浮动后向特征选择算法对极限学习机暂态稳定评估性能进行提升。首先对输入特征通过主元分析降维并利用序列浮动后向算法进行特征选择,再将最优特征集输入差分进化极限学习机进行暂态稳定评估,最后在新英格兰10机39节点系统中进行验证分析,结果表明,所提模型与其他极限学习机模型相比,大大提升了其在暂态稳定分类评估中的性能。 展开更多
关键词 极限学习 差分进化算法 序列浮动后向特征选择 暂态稳定评估
在线阅读 下载PDF
自适应混沌粒子群算法对极限学习机参数的优化 被引量:22
10
作者 陈晓青 陆慧娟 +1 位作者 郑文斌 严珂 《计算机应用》 CSCD 北大核心 2016年第11期3123-3126,共4页
针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类... 针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSOELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。 展开更多
关键词 自适应 极限学习 混沌粒子群 基因分类
在线阅读 下载PDF
基于北方苍鹰优化核极限学习机的玉米品种鉴别研究 被引量:3
11
作者 倪金 索丽敏 +1 位作者 刘海龙 赵蕊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1584-1590,共7页
玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该... 玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该研究基于近红外光谱技术结合核极限学习机(KELM)针对玉米品种分类问题构建鉴别模型,利用甜糯黄玉米、甜妃、昌甜、金色超人、香甜5号五种玉米种子,每种取(13±0.5)g作为一份样品,共计126个样品作为研究对象,对采集的近红外光谱数据进行标准正态变量变换(SNV)处理后采用竞争性自适应重加权采样法(CARS)对数据集进行降维。按照5∶1的比例将样本随机分为训练集和测试集,探讨北方苍鹰优化算法(NGO)对KELM模型性能的影响。分别使用NGO算法、粒子群算法(PSO)和灰狼算法(GWO)对KELM模型的两个重要参正则化参数C和高斯核函数γ进行寻优,选择五折交叉验证识别准确率最高时对应的C和γ作为建模参数,建立KELM分类模型。将各算法寻优后建立的KELM模型性能进行对比。实验发现,通过NGO算法寻优后建立的KELM模型性能高于其他两种算法优化的KELM模型,测试集识别准确率可达100%。在CARS降维的基础上分别建立CARS-NGO-KELM、CARS-PSO-KELM和CARS-GWO-KELM模型,结果表明,在面对降维后的数据时NGO算法仍能表现较好的性能,其测试集准确率和F 1值均达到了100%。为了验证样本数量对模型的影响,使用各品种样品数量同步后的共计90个样品重新训练KELM模型。结果表明,在同步各类样品数量后,各个模型在训练集和测试集上的表现均有提升。该研究在近红外光谱的基础上引入多种优化算法构建核极限学习机模型并将识别准确率提升至100%,实现了对玉米种子快速、无损、准确的品种鉴别,研究结果为玉米品种快速鉴别提供了一种新方法,同时也对监管部门具有一定的指导意义。 展开更多
关键词 近红外光谱 玉米 北方苍鹰 竞争性自适应加权采样 极限学习
在线阅读 下载PDF
基于自适应在线极限学习机模型的预测方法 被引量:8
12
作者 徐勇 王东 张慧 《统计研究》 CSSCI 北大核心 2016年第7期103-109,共7页
本文针对单个在线极限学习机输出不稳定的情况,提出一种自适应集成在线极限学习机算法(ASEOSELM)。算法首先初始化多个在线极限学习机模型,然后根据到达的每一批次数据的训练误差及其方差自适应地调整各个在线极限学习机的集成权重,并... 本文针对单个在线极限学习机输出不稳定的情况,提出一种自适应集成在线极限学习机算法(ASEOSELM)。算法首先初始化多个在线极限学习机模型,然后根据到达的每一批次数据的训练误差及其方差自适应地调整各个在线极限学习机的集成权重,并动态删除那些小于设定阈值的模型以提高算法的训练速度,最后选择准确度高、泛化能力好的模型用于集成预测。通过函数拟合、UCI数据集以及真实股价预测实验表明,文中提出的ASE-OSELM算法相比传统的OSELM、LS-SVM和BPNN算法具有更高的预测准确度和抗干扰能力。 展开更多
关键词 人工神经网络 自适应集成 选择性集成 在线极限学习
在线阅读 下载PDF
基于最小二乘支持向量机的自适应差分进化算法 被引量:5
13
作者 阎啸天 武穆清 《系统仿真学报》 CAS CSCD 北大核心 2009年第7期1921-1925,共5页
差分进化(DE)算法具有操作简单,控制参数少,鲁棒性好等特点,但在对某些连续空间复杂函数进行优化时存在搜索盲目性较大、效率不高的问题。为此提出一种基于最小二乘支持向量机(LS-SVM)的自适应DE算法,该算法改进了标准DE算法的差分变异... 差分进化(DE)算法具有操作简单,控制参数少,鲁棒性好等特点,但在对某些连续空间复杂函数进行优化时存在搜索盲目性较大、效率不高的问题。为此提出一种基于最小二乘支持向量机(LS-SVM)的自适应DE算法,该算法改进了标准DE算法的差分变异和交叉等关键遗传操作,引入了基于LS-SVM的种群进化引导策略,基于LS-SVM对种群n最优训练集数据进行回归函数逼近和优化,分析了种群进化引导策略的自适应应用条件,给出了算法的整体流程及各关键步骤的复杂度。对标准测试函数的对比优化结果表明,改进算法相比标准DE算法具有更好的全局寻优能力和更高的优化效率,可以满足对连续空间复杂函数优化问题的可靠、高效求解。 展开更多
关键词 全局优化 差分进化算法 最小二乘支持向量 函数逼近 自适应
在线阅读 下载PDF
基于自适应噪声完整聚合经验模态分解-极限学习机的短期血糖预测 被引量:6
14
作者 王延年 郭占丽 +1 位作者 袁进磊 李全忠 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第6期702-710,共9页
糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进... 糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进行分解,得到不同频段的血糖分量IMF(本征模态函数)和残余分量,以降低血糖时间序列的非平稳性;然后对各血糖分量IMF和残余分量分别构建极限学习机,并将各极限学习机的预测结果融合,获得患者未来血糖浓度的预测值,提高预测精度;在此基础上,进行低血糖预警。利用从河南省人民医院内分泌科采集的56例患者的数据进行模型检验,结果表明:与ELM模型和EMD-ELM模型相比,CEEMDAN-ELM短期血糖预测模型提前45 min的预测仍可达到较高预测水平(RMSE=0.205 1,MAPE=2.116 4%);低血糖预警虚警率和漏警率分别为0.97%和7.55%。血糖预测时间的延长,可以为医生和患者提供充足时间进行血糖浓度控制,提高糖尿病治疗的效果。 展开更多
关键词 血糖预测 低血糖预警 自适应噪声完整聚合经验模态分解 极限学习
在线阅读 下载PDF
基于反向学习的自适应差分进化算法 被引量:16
15
作者 李龙澍 翁晴晴 《计算机应用》 CSCD 北大核心 2018年第2期399-404,共6页
为解决差分进化(DE)算法过早收敛与搜索能力低的问题,讨论对控制参数的动态调整,提出一种基于反向学习的自适应差分进化算法。该算法通过反向精英学习机制来增强种群的局部搜索能力,获取精确度更高的最优个体;同时,采用高斯分布随机性... 为解决差分进化(DE)算法过早收敛与搜索能力低的问题,讨论对控制参数的动态调整,提出一种基于反向学习的自适应差分进化算法。该算法通过反向精英学习机制来增强种群的局部搜索能力,获取精确度更高的最优个体;同时,采用高斯分布随机性提高单个个体的开发能力,通过扩充种群的多样性,避免算法过早收敛,整体上平衡全局搜索与局部寻优的能力。采用CEC 2014中的6个测试函数进行仿真实验,并与其他差分进化算法进行对比,实验结果表明所提算法在收敛速度、收敛精度及可靠性上表现更优。 展开更多
关键词 差分进化 自适应 高斯分布 反向学习
在线阅读 下载PDF
基于精英区域学习的多种群自适应的差分进化算法 被引量:2
16
作者 蔡万刚 蔡志伟 郑建国 《运筹与管理》 CSSCI CSCD 北大核心 2017年第8期27-33,共7页
为了进一步提高差分进化算法的收敛速度、算法精度和稳定性,采用多种群技术来增加算法收敛速度和降低复杂度;利用精英区域学习策略来对算法的全局搜索能力和算法精度进一步提升,引进自适应免疫搜索策略,以实现自适应修正差分算法的变异... 为了进一步提高差分进化算法的收敛速度、算法精度和稳定性,采用多种群技术来增加算法收敛速度和降低复杂度;利用精英区域学习策略来对算法的全局搜索能力和算法精度进一步提升,引进自适应免疫搜索策略,以实现自适应修正差分算法的变异因子和交叉因子。通过五个测试函数,把本文算法与最新文献中的算法进行对比,表明算法在收敛速度、精度和高维问题寻优能力方面的优越性。 展开更多
关键词 差分进化算法 多种群技术 免疫自适应搜索策略 精英区域学习策略
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法 被引量:2
17
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习 玛纳斯河
在线阅读 下载PDF
融合核极限学习机与PSR的混沌交通流预测 被引量:2
18
作者 夏晶晶 陈振 《计算机工程与设计》 北大核心 2024年第6期1880-1887,共8页
传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌... 传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌理论确定样本时序最佳延迟时间和嵌入维数,利用PSR对样本重构,利用优化核极限学习机建立短时混沌交通流预测模型。采用郑州市某主干路口车流实测数据进行实证分析,其结果表明,改进模型能够有效降低预测误差,实现混沌交通流实时准确预测。 展开更多
关键词 相空间重构 极限学习 交通流预测 蝴蝶优化算法 量子自适应 邻域扰动 惯性权重
在线阅读 下载PDF
鲸鱼算法改进极限学习机的葡萄酒品质评价研究 被引量:3
19
作者 窦力 郑崴 +1 位作者 李柏秋 李斐 《食品与机械》 CSCD 北大核心 2024年第6期62-68,共7页
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通... [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.9445,GA-ELM的准确率为0.9290,PSO-ELM的准确率为0.9061,传统的ELM方法准确率为0.8177。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。 展开更多
关键词 近红外光谱 极限学习 鲸鱼优化算法 特征波长 竞争性自适应重加权采样法
在线阅读 下载PDF
基于改进非洲秃鹫算法优化极限学习机的船舶运动预测 被引量:1
20
作者 戚得众 吴云志 +1 位作者 丁璐 丁坦 《电子测量技术》 北大核心 2024年第5期54-60,共7页
针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测。在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应... 针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测。在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应算子,调整两类秃鹫对其他秃鹫的指引作用,提升算法的收敛速度和解的质量。利用IAVOA优化的ELM模型对船模水池试验运动数据进行预测,并采用均方根误差和平均绝对误差评判该预测模型,与现有其他启发式算法优化ELM模型比较,所提出的IAVOA-ELM具有更优的预测精度和泛化能力。 展开更多
关键词 极限学习 秃鹫优化算法 Circle混沌映射 自适应调整算子 船舶运动预测
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部