期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
基于邻域标准差的密度调整谱聚类算法
1
作者 郭笑雨 刘金金 +3 位作者 陈亚军 李豪杰 袁培燕 赵晓焱 《工程科学与技术》 北大核心 2025年第2期40-53,共14页
针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想... 针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。 展开更多
关键词 密度调整 邻域标准差 自适应 密度峰值
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
2
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度算法 子簇融合
在线阅读 下载PDF
基于密度分布的鲁棒谱聚类算法 被引量:1
3
作者 李超 廖红梅 +2 位作者 徐晓 郭丽丽 丁世飞 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2645-2663,共19页
谱聚类作为一种基于图论的聚类方法,通过相似性矩阵对数据进行特征分解或将数据投影到低维空间以实现更好的数据划分.谱聚类因其适用于复杂数据和非凸子簇而受到广泛的关注,并已成功应用在很多领域.然而,计算复杂度高、噪声敏感等问题... 谱聚类作为一种基于图论的聚类方法,通过相似性矩阵对数据进行特征分解或将数据投影到低维空间以实现更好的数据划分.谱聚类因其适用于复杂数据和非凸子簇而受到广泛的关注,并已成功应用在很多领域.然而,计算复杂度高、噪声敏感等问题会限制其聚类效果的进一步提升.针对这些问题,本文提出了一种基于密度分布的鲁棒谱聚类算法.首先,设置噪声系数以过滤少量的低密度噪声点.其次,根据密度峰值聚类具有的特性,即尽可能多地划分数据能够保证子簇内数据标签的一致性,新提出的算法能够在较少的子簇数和更高的簇内标签一致性上达到平衡,实现了对数据更加优质的划分.最后,基于簇间密度分布的相似性度量改善了谱聚类在密度不均匀数据集上的聚类效果.合成数据以及真实数据上的实验充分证明了新算法在9个最新改进算法中的有效性.在保证聚类效率的前提下,新算法在真实数据上的准确率、调整兰德系数和调整互信息的平均值上至少分别提升了10.02%、22.11%和15.76%. 展开更多
关键词 密度分布 子簇相似性 局部峰值 噪声检测
在线阅读 下载PDF
基于局部密度构造相似矩阵的谱聚类算法 被引量:14
4
作者 吴健 崔志明 +2 位作者 时玉杰 盛胜利 龚声蓉 《通信学报》 EI CSCD 北大核心 2013年第3期14-22,共9页
依据样本数据点分布的局部和全局一致性特征,提出了一种基于局部密度构造相似矩阵的谱聚类算法。首先通过分析样本数据点的分布特性给出了局部密度定义,根据样本点的局部密度对样本点集由密到疏排序,并按照设计的连接策略构建无向图;然... 依据样本数据点分布的局部和全局一致性特征,提出了一种基于局部密度构造相似矩阵的谱聚类算法。首先通过分析样本数据点的分布特性给出了局部密度定义,根据样本点的局部密度对样本点集由密到疏排序,并按照设计的连接策略构建无向图;然后以GN算法思想为参考,给出了一种基于边介数的权值矩阵计算方法,经过数据转换得到谱聚类相似矩阵;最后通过第一个极大本征间隙出现的位置来确定类个数,并利用经典聚类方法对特征向量空间中的数据点进行聚类。通过人工仿真数据集和UCI数据集进行测试,实验结果表明本文谱聚类算法具有较好的顽健性。 展开更多
关键词 相似矩阵 局部密度 无向图构建 边介数
在线阅读 下载PDF
基于共享最近邻的密度自适应邻域谱聚类算法 被引量:8
5
作者 葛君伟 杨广欣 《计算机工程》 CAS CSCD 北大核心 2021年第8期116-123,共8页
在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性。针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN... 在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性。针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN)。通过一种无参数的密度自适应邻域构建方法构建无向图,将共享最近邻作为衡量样本之间的相似性度量进而消除参数对构建相似图的影响,体现全局和局部的一致性。实验结果表明,SC-DANSN算法相比K-means算法和基于K最近邻的谱聚类算法(SC-KNN)具有更高的聚类精度,同时相比SC-KNN算法对参数的选取敏感性更低。 展开更多
关键词 相似性矩阵 密度自适应邻域 共享最近邻 K最近邻
在线阅读 下载PDF
基于密度敏感的改进自适应谱聚类算法 被引量:3
6
作者 赵小强 刘晓丽 《兰州理工大学学报》 CAS 北大核心 2018年第6期102-106,共5页
针对谱聚类算法在构造相似矩阵时对尺度参数敏感以及对多尺度数据集聚类效果不太理想的问题,提出了基于密度敏感的改进自适应谱聚类算法.首先利用密度差来调整簇类样本点之间的相似度构造新的相似矩阵函数,然后利用新的相似矩阵构造拉... 针对谱聚类算法在构造相似矩阵时对尺度参数敏感以及对多尺度数据集聚类效果不太理想的问题,提出了基于密度敏感的改进自适应谱聚类算法.首先利用密度差来调整簇类样本点之间的相似度构造新的相似矩阵函数,然后利用新的相似矩阵构造拉氏矩阵,选取拉氏矩阵的前k个最大特征值对应的特征向量组成新的向量空间,新的向量空间中的点与原始数据一一对应,最后引入K-means聚类算法对数据点进行聚类.该算法在降低对尺度参数敏感性的同时又改善了对多尺度数据集的处理.通过在人工数据集以及UCI数据集仿真实验结果表明,本文提出的算法具有较优的聚类效果. 展开更多
关键词 算法 尺度参数 自适应 相似矩阵
在线阅读 下载PDF
融合最近邻矩阵与局部密度的自适应K-means聚类算法 被引量:6
7
作者 艾力米努尔·库尔班 谢娟英 姚若侠 《计算机科学与探索》 CSCD 北大核心 2023年第2期355-366,共12页
针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启... 针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启发,通过引入数据对象间的距离差异值构造邻近矩阵,根据邻近矩阵计算局部密度,不需要任何参数设置,采取最近邻矩阵与局部密度融合策略,自适应确定初始聚类中心数目和位置,同时完成非中心点的初分配。人工数据集和UCI数据集的实验测试,以及与传统K-means算法、基于离群点改进的K-means算法、基于密度改进的K-means算法的实验比较表明,提出的自适应K-means算法对人工数据集的孤立点免疫度较高,对UCI数据集具有更准确的聚类结果。 展开更多
关键词 自适应K-means算法 密度峰值原则 最邻近吸收原则 局部密度
在线阅读 下载PDF
基于密度峰值优化的谱聚类算法 被引量:6
8
作者 薛丽霞 孙伟 +2 位作者 汪荣贵 杨娟 胡敏 《计算机应用研究》 CSCD 北大核心 2019年第7期1948-1950,1983,共4页
针对经典谱聚类算法无法自适应确定聚类数目,以及在处理大数据量的聚类问题时效率不高的问题,提出了一种基于密度峰值优化的谱聚类算法。该方法首先计算数据对象的局部密度,以及每个数据对象与其他数据对象的最小距离,并依据一定的规则... 针对经典谱聚类算法无法自适应确定聚类数目,以及在处理大数据量的聚类问题时效率不高的问题,提出了一种基于密度峰值优化的谱聚类算法。该方法首先计算数据对象的局部密度,以及每个数据对象与其他数据对象的最小距离,并依据一定的规则自适应产生初始聚类中心,确定聚类数目;然后使用Nystrom抽样来降低特征分解的计算复杂度,以达到提高谱聚类算法的效率。实验结果表明,该方法能够准确地得到聚类数目,并且有效提高了聚类的准确率和效率。 展开更多
关键词 密度峰值 密度 自适应 Nystrom抽样
在线阅读 下载PDF
K近邻的自适应谱聚类快速算法 被引量:4
9
作者 范敏 王芬 +2 位作者 李泽明 李志勇 张晓波 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期147-152,共6页
谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过... 谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过程需要较大的时间和内存开销。研究从构造相似度矩阵入手,以传统NJW算法为基础,提出一种基于K近邻的自适应谱聚类快速算法FA-SC。该算法能自动确定尺度参数σ;同时,对输入数据集分块处理,并用基于K近邻的稀疏相似度矩阵保存样本信息,减少计算的内存开销,提高了运行速度。通过实验,与传统谱聚类算法比较,FA-SC算法在人工数据集和UCI数据集上能够取得更好的聚类效果。 展开更多
关键词 K近邻 稀疏矩阵 自适应 快速算法
在线阅读 下载PDF
SA-BFSN:一种自适应基于密度聚类的算法 被引量:3
10
作者 陈昊 侯慧群 +1 位作者 杨承志 邱磊 《计算机工程与应用》 CSCD 2012年第36期186-189,共4页
针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实... 针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实现聚类过程的全自动化,能够有效处理任意形状、大小和密度的簇。 展开更多
关键词 数据挖掘 密度 基于广度优先搜索邻居的算法(BFSN) 自适应基于广度优先搜索邻居的 算法(SA-BFSN)
在线阅读 下载PDF
基于局部密度和测地距离的谱聚类
11
作者 张涛 葛洪伟 +1 位作者 苏辉 张欢庆 《计算机工程与应用》 CSCD 北大核心 2017年第7期141-146,262,共7页
传统根据K-近邻图计算测地距离的方法,虽然能够发现流形分布数据间的相似关系,但是当不同类的点存在粘连关系时,依此计算相似度时不能体现样本间的真实关系,从而无法有效聚类。针对传统测地距离计算相似度的方法不能有效处理粘连数据集... 传统根据K-近邻图计算测地距离的方法,虽然能够发现流形分布数据间的相似关系,但是当不同类的点存在粘连关系时,依此计算相似度时不能体现样本间的真实关系,从而无法有效聚类。针对传统测地距离计算相似度的方法不能有效处理粘连数据集的问题,提出了基于局部密度和测地距离的谱聚类方法。计算样本的局部密度,寻找每个样本点的最近高密度点,并选择边缘点和非边缘点;在边缘点和其最近高密度点之间构造边、非边缘点之间的K个近邻点构造边,依此计算测地距离和相似度并进行聚类。在人工数据集和UCI数据集上的实验表明,该算法在处理粘连数据集时有效提高了聚类准确率。 展开更多
关键词 K-近邻图 测地距离 局部密度 相似度
在线阅读 下载PDF
基于自适应可达距离的密度峰值聚类算法 被引量:7
12
作者 章曼 张正军 +1 位作者 冯俊淇 严涛 《计算机应用》 CSCD 北大核心 2022年第6期1914-1921,共8页
针对基于快速搜索和发现密度峰值的聚类(CFSFDP)算法中截断距离需要人工选取,以及最近邻分配带来的误差导致的在具有不同密度簇的复杂数据集上的聚类效果不佳的问题,提出了一种基于自适应可达距离的密度峰值聚类(ARD-DPC)算法。该算法... 针对基于快速搜索和发现密度峰值的聚类(CFSFDP)算法中截断距离需要人工选取,以及最近邻分配带来的误差导致的在具有不同密度簇的复杂数据集上的聚类效果不佳的问题,提出了一种基于自适应可达距离的密度峰值聚类(ARD-DPC)算法。该算法利用非参数核密度估计方法计算点的局部密度,根据决策图选取聚类中心,并利用自适应可达距离分配数据点,从而得到最终的聚类结果。在4个合成数据集和6个UCI数据集上进行了仿真实验,将所提算法ARD-DPC与基于快速搜索和发现密度峰值的聚类(CFSFDP)、基于密度的噪声应用空间聚类(DBSCAN)、基于密度自适应距离的密度峰聚类(DADPC)算法进行了比较,实验结果表明,相比其他三种算法,ARD-DPC算法在7个数据集上的标准化互信息(NMI)、兰德指数(RI)和F1-measure取得了最大值,在2个数据集分别取得F1-measure和NMI的最大值,只对模糊度较高、聚类特征不明显的Pima数据集聚类效果不佳;同时,ARD-DPC算法在合成数据集上能准确地识别出聚类数目和具有复杂密度的簇。 展开更多
关键词 算法 密度峰值 截断距离 非参数核密度估计 自适应可达距离
在线阅读 下载PDF
自适应局部半径的DBSCAN聚类算法 被引量:19
13
作者 秦佳睿 徐蔚鸿 +1 位作者 马红华 曾水玲 《小型微型计算机系统》 CSCD 北大核心 2018年第10期2186-2190,共5页
经典的基于密度的聚类方法 DBSCAN算法需要指定邻域半径和最小数据点阈值两个基本参数.这两个参数的确定对聚类结果的影响非常大.目前缺少有效的参数选择确定方法,同时DBSCAN算法在聚类过程中,使用统一的邻域半径参数,使得密度不均匀集... 经典的基于密度的聚类方法 DBSCAN算法需要指定邻域半径和最小数据点阈值两个基本参数.这两个参数的确定对聚类结果的影响非常大.目前缺少有效的参数选择确定方法,同时DBSCAN算法在聚类过程中,使用统一的邻域半径参数,使得密度不均匀集上的聚类质量不高.本文提出一种自适应选择局部半径的密度聚类算法(SALE-DBSCAN),通过确定密度峰值点,自适应选择聚类的局部邻域半径,简化了参数选择的过程;通过使用自适应选择的局部邻域半径扩张密度峰值点的邻域进行聚类,提高了聚类结果质量.实验结果表明,本SALE-DBSCAN算法相较其他密度聚类算法的聚类结果更加准确. 展开更多
关键词 密度 DBSCAN 密度峰值 自适应局部半径
在线阅读 下载PDF
结合鲸鱼优化算法的自适应密度峰值聚类算法 被引量:22
14
作者 王芙银 张德生 张晓 《计算机工程与应用》 CSCD 北大核心 2021年第3期94-102,共9页
针对密度峰值聚类算法(DPC)的聚类结果对截断距离dc的取值较为敏感、手动选取聚类中心存在着一定主观性的问题,提出了一种结合鲸鱼优化算法的自适应密度峰值聚类算法(WOA-DPC)。利用加权的局部密度和相对距离乘积的斜率变化趋势实现聚... 针对密度峰值聚类算法(DPC)的聚类结果对截断距离dc的取值较为敏感、手动选取聚类中心存在着一定主观性的问题,提出了一种结合鲸鱼优化算法的自适应密度峰值聚类算法(WOA-DPC)。利用加权的局部密度和相对距离乘积的斜率变化趋势实现聚类中心的自动选择,避免了手动选取导致的聚类中心少选或多选的情况;考虑到合理的截断距离dc是提高DPC算法聚类效果的重要因素,建立以ACC指标为目标函数的优化问题,利用鲸鱼优化算法(WOA)有效地寻优能力对目标函数进行优化,寻找最佳的截断距离dc;利用人工合成数据集与UCI上的真实数据集对WOA-DPC算法进行测试。实验结果表明,该算法在FMI、ARI和AMI指标上均优于DPC算法、DBSCAN算法以及K-Means算法,具有更好的聚类表现。 展开更多
关键词 密度峰值算法 鲸鱼优化算法 中心自适应 截断距离
在线阅读 下载PDF
基于局部密度聚类算法的变压器故障状态评估 被引量:16
15
作者 罗伟明 吴帆 +4 位作者 黄业广 吴杰康 覃炜梅 龚杰 金尚婷 《广东电力》 2018年第8期81-90,共10页
为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模... 为提高油浸式电力变压器故障状态评估的准确性,结合局部密度聚类(local density clustering,LDC)算法和三比值法提出一种变压器故障状态评估方法——以油中溶解气体为研究对象,对气体数据进行LDC处理,以最后聚类结果作为故障状态评估模型及结合三比值法对新数据进行故障评估。该方法在弥补聚类方法无法准确反映故障状态和三比值法编码不全、编码太片面等不足的同时,在变压器状态发生变化时能随着新数据的输入自主修正故障状态评估模型。不同实验结果表明该方法用在变压器故障评估中,具有较高的故障评估准确率,并且当出现未知故障时能有效修正所搭建故障状态评估模型,可以在一定程度上反映变压器故障状态,保证变压器正常、安全运行。 展开更多
关键词 油中溶解气体 局部密度算法 三比值法 归一化处理 变压器 故障评估
在线阅读 下载PDF
基于密度自适应邻域相似图的半监督谱聚类 被引量:4
16
作者 刘友超 张曦煌 《计算机应用研究》 CSCD 北大核心 2020年第9期2604-2609,共6页
谱聚类是基于谱图划分理论的一种聚类算法,传统的谱聚类算法属于无监督学习算法,只能利用单一数据来进行聚类。针对这种情况,提出一种基于密度自适应邻域相似图的半监督谱聚类(DAN-SSC)算法。DAN-SSC算法在传统谱聚类算法的基础上结合... 谱聚类是基于谱图划分理论的一种聚类算法,传统的谱聚类算法属于无监督学习算法,只能利用单一数据来进行聚类。针对这种情况,提出一种基于密度自适应邻域相似图的半监督谱聚类(DAN-SSC)算法。DAN-SSC算法在传统谱聚类算法的基础上结合了半监督学习的思想,很好地解决了传统谱聚类算法无法充分利用所有数据,不得不对一些有标签数据进行舍弃的问题;将少量的成对约束先验信息扩散至整个空间,使其能更好地对聚类过程进行指导。实验结果表明,DAN-SSC算法具有可行性和有效性。 展开更多
关键词 密度自适应邻域 相似图 半监督学习
在线阅读 下载PDF
基于混合型数据的自适应谱聚类集成算法 被引量:9
17
作者 刘惠 《统计与决策》 CSSCI 北大核心 2020年第9期35-39,共5页
文章基于混合型数据对传统谱聚类算法进行改进。针对传统谱聚类算法对尺度参数敏感的问题,提出一种密度调整的尺度参数自适应的核函数。同时,在谱聚类的聚类步中为了减少初始聚类中心对聚类结果的影响,利用集成的k-means代替单一的k-me... 文章基于混合型数据对传统谱聚类算法进行改进。针对传统谱聚类算法对尺度参数敏感的问题,提出一种密度调整的尺度参数自适应的核函数。同时,在谱聚类的聚类步中为了减少初始聚类中心对聚类结果的影响,利用集成的k-means代替单一的k-means进行聚类,以增强聚类结果的稳定性。并通过实验对比证明算法的有效性。 展开更多
关键词 自适应 核函数 集成算法 K-MEANS
在线阅读 下载PDF
基于局部密度下降搜索的自适应聚类方法 被引量:6
18
作者 徐正国 郑辉 +1 位作者 贺亮 姚佳奇 《计算机研究与发展》 EI CSCD 北大核心 2016年第8期1719-1728,共10页
聚类分析是数据挖掘中一个重要的研究领域,用于在无监督条件下,从混合类别的数据集中分离各样本的自然分组.根据不同的先验条件,现已提出了多种不同的聚类算法.但复杂数据集中存在的聚类个数未知、聚类形态混杂、样本分布不均匀以及类... 聚类分析是数据挖掘中一个重要的研究领域,用于在无监督条件下,从混合类别的数据集中分离各样本的自然分组.根据不同的先验条件,现已提出了多种不同的聚类算法.但复杂数据集中存在的聚类个数未知、聚类形态混杂、样本分布不均匀以及类间样本数不均衡等问题,仍然是当前聚类分析研究中的重难点问题.针对这些问题,通过定义样本分布的局部密度,提出了一种利用类内密度有序性搜索聚类边界的新的聚类方法,能够实现在未知聚类个数条件下,对任意分布形态的数据样本集进行聚类.同时,通过自适应调节聚类参数来处理数据分布疏密度不一、类间样本数不均衡以及局部密度异常等特殊情况,避免样本类别被误划分和噪声数据干扰.实验结果表明,在6类典型测试集上,提出的新聚类算法均有较好的适用性,而在与典型聚类算法和最近发表的一种聚类算法的性能指标对比上,新算法也表现更优. 展开更多
关键词 数据挖掘 局部密度 下降搜索 自适应
在线阅读 下载PDF
基于密度峰值聚类算法的局部放电脉冲分割 被引量:5
19
作者 朱永利 蒋伟 刘刚 《电工技术学报》 EI CSCD 北大核心 2020年第6期1377-1386,共10页
局部放电(PD)信号处理是电力设备绝缘状态评估的基础,而特征量提取又是信号处理的关键环节。特征量提取包括局部放电脉冲分割和放电特征量提取两个步骤。放电脉冲分割提取是后续PD信号特征提取及故障分类的前提。为尽可能保留放电信息,... 局部放电(PD)信号处理是电力设备绝缘状态评估的基础,而特征量提取又是信号处理的关键环节。特征量提取包括局部放电脉冲分割和放电特征量提取两个步骤。放电脉冲分割提取是后续PD信号特征提取及故障分类的前提。为尽可能保留放电信息,同时减少人工干涉,该文提出了一种基于聚类算法的PD脉冲分割提取方法。该方法采用小波分解算法进行滤波处理,使用噪声抑制比(NRR)表征滤波效果;以所有局部放电信号半波脉冲为对象,计算各半波脉冲的能量(即信号瞬时值平方对时间的积分),从而使该方法能更准确地描述局部放电过程。应用Otsu算法自适应计算能量阈值并结合密度峰值聚类算法(DPC)实现PD脉冲的自动分割。在实验室建立了三种不同类型局部放电模型,采集得到10组电晕放电、11组悬浮放电和30组锥板放电数据,以对该文方法进行验证。结果都取得了80%以上的识别率,比同类算法更高或相当,表明了该文方法的优越性。 展开更多
关键词 局部放电 最大间方差法 自适应能量阈值 脉冲分割 密度峰值
在线阅读 下载PDF
基于流形距离核的自适应迁移谱聚类算法 被引量:3
20
作者 齐晓轩 都丽 洪振麒 《计算机应用与软件》 北大核心 2020年第8期265-273,共9页
谱聚类算法中,当样本的簇边缘分布不均匀或不同簇边缘分布密度相近时,会导致错分现象。通过对相似度矩阵的改进,提出基于流形距离核的自适应迁移谱聚类算法。使用流形距离作为构造相似度矩阵的度量方法,共享近邻方法对相似度矩阵进行自... 谱聚类算法中,当样本的簇边缘分布不均匀或不同簇边缘分布密度相近时,会导致错分现象。通过对相似度矩阵的改进,提出基于流形距离核的自适应迁移谱聚类算法。使用流形距离作为构造相似度矩阵的度量方法,共享近邻方法对相似度矩阵进行自适应调整,且使用加权距离自适应调节核参数,提高谱聚类对复杂数据集的处理能力。针对样本匮乏或受到污染时聚类效果不佳问题,引入迁移学习,利用源域知识指导目标域进行聚类。经实验验证,该算法性能优于传统谱聚类算法。 展开更多
关键词 相似度矩阵 流形距离核 迁移学习 全局一致性 局部结构 自适应
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部