期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
电力变压器励磁涌流判别的自适应小波神经网络方法 被引量:28
1
作者 李海锋 王 钢 +1 位作者 李晓华 胡少鹏 《中国电机工程学报》 EI CSCD 北大核心 2005年第7期144-150,共7页
励磁涌流识别一直是电力变压器差动保护中比较关注的问题。文中提出了一种基于自适应小波神经网络实现变压器励磁涌流判别的新方法。结合励磁涌流和内部故障电流的特点,构建了一个四层的自适应小波神经网络模型,并对其具体的实现方法进... 励磁涌流识别一直是电力变压器差动保护中比较关注的问题。文中提出了一种基于自适应小波神经网络实现变压器励磁涌流判别的新方法。结合励磁涌流和内部故障电流的特点,构建了一个四层的自适应小波神经网络模型,并对其具体的实现方法进行了详细的分析;利用ATP-EMTP 程序进行仿真计算生成训练样本和测试样本,对所构建的网络进行了训练和测试,结果表明自适应小波神经网络能准确、可靠地识别出变压器的励磁涌流状态。 展开更多
关键词 电力变压器 励磁涌流 差动保护 自适应小波神经网络方法
在线阅读 下载PDF
基于连续小波卷积神经网络的轴承智能故障诊断方法 被引量:1
2
作者 耿志强 陈威 +1 位作者 马波 韩永明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第10期2069-2075,共7页
传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的... 传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的计算空间,提高CNN的整体自适应性.在凯斯西储大学轴承数据集上开展滚动轴承故障诊断方法对比实验.结果表明,与传统基于CNN、快速傅里叶变换-CNN、长短时记忆CNN故障诊断方法相比,所提方法的故障诊断精度分别提高了7.45、4.46和1.53个百分点,CNN的收敛速度更快.在不同工况的泛化任务中,所提方法的平均准确率为99.64%,准确性和泛化能力良好. 展开更多
关键词 卷积神经网络(CNN) 连续小波 自适应激活函数 轴承 故障诊断
在线阅读 下载PDF
基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术 被引量:1
3
作者 朱纬 王敏林 董雪明 《电子测量技术》 北大核心 2024年第8期189-194,共6页
基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术... 基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术。为了提高温度误差建模的进度,提高传统神经网络的逼近能力,通过自适应前向线性预测滤波器对建模用测角仪温度漂移数据进行预处理,并采用自适应小波回声神经网络建立温度漂移模型,能够避免传统神经网络结构设计的盲目性和局部最优等问题,增强了网络学习能力和泛化能力,并利用自适应律代替神经网络梯度进行网络训练,提升神经网络的逼近精度和收敛速度。实验结果表明,该模型可以提高光纤陀螺测角仪的测量精度和环境适应性,为光纤陀螺测角仪的性能优化和实际应用提供了可靠的技术支撑。 展开更多
关键词 测角仪 温度误差建模 小波回声神经网络 粒子群优化 自适应前向线性预测滤
在线阅读 下载PDF
基于有限时间积分视线制导的四自由度无人水面船自适应神经网络路径跟踪控制
4
作者 李俊辉 祝贵兵 《上海海事大学学报》 北大核心 2025年第2期9-17,共9页
为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-... 为解决四自由度(4 degree-of-freedom,4-DOF)无人水面船在动态不确定性和外部扰动下的路径跟踪问题,提出一种基于有限时间积分视线(finite-time integral line-of-sight,FT-ILOS)制导的自适应神经网络路径跟踪控制方法。在视线(line-of-sight,LOS)制导框架下,利用有限时间理论,引入积分机制和新的制导机制,实现船舶位置跟踪误差的有限时间收敛,且避免制导积分项引起的饱和风险。基于反步控制法设计框架,结合FT-ILOS制导方法,利用自适应神经网络逼近复合扰动项,利用虚拟参数学习技术解决“维数灾难”问题,同时利用动态面控制技术降低计算复杂度。为减少执行器响应频率和磨损,在控制律与执行器之间建立周期事件触发协议。通过李雅普诺夫稳定性分析证明闭环控制系统中所有信号均有界,通过MATLAB仿真对比实验验证所提控制方法的有效性和鲁棒性。 展开更多
关键词 无人水面船 路径跟踪 自适应神经网络控制 周期事件触发协议 有限时间积分视线(FT-ILOS)制导方法
在线阅读 下载PDF
基于BP神经网络的爆炸用激波管峰值压力预测方法 被引量:1
5
作者 陈梓薇 王仲琦 曾令辉 《爆炸与冲击》 EI CAS CSCD 北大核心 2024年第5期130-139,共10页
针对爆炸用激波管缺乏相应的经验公式和数值模拟时效性差的问题,同时为了快速得到激波管内的峰值压力,建立预测爆炸用激波管试验段峰值压力的四层反向传播(back propagation,BP)神经网络。采用数值模拟方法计算激波管试验段峰值压力,计... 针对爆炸用激波管缺乏相应的经验公式和数值模拟时效性差的问题,同时为了快速得到激波管内的峰值压力,建立预测爆炸用激波管试验段峰值压力的四层反向传播(back propagation,BP)神经网络。采用数值模拟方法计算激波管试验段峰值压力,计算结果与激波管爆炸试验结果进行对比,平均相对误差为2.69%。证明激波管数值模型的准确性后,将数值模拟得到的195组激波管测得的峰值压力作为输出层,激波管驱动段TNT的药量、药柱的长径比以及爆炸比例距离作为神经网络的输入层。为了加快神经网络迭代速度和提高预测精度,使用自适应矩估计(adaptive moment estimation,ADAM)算法作为神经网络误差梯度下降的优化算法。结果表明,训练好的神经网络得到的预测结果与模拟值基本吻合,预测结果与数值模拟结果的平均相对误差为3.26%。BP神经网络模型能够反映激波管爆炸的峰值压力与影响因素之间的映射关系,采用BP神经网络模型计算时比数值模拟节约了大量运算时间。 展开更多
关键词 BP神经网络 峰值压力 自适应矩估计
在线阅读 下载PDF
神经网络驱动的建筑自适应表皮产出性能预测方法
6
作者 史学鹏 石诚斐 +1 位作者 解旭东 汪丽君 《南方建筑》 CSCD 北大核心 2024年第8期14-21,共8页
作为应对环境与能源问题的解决办法,耦合动态光伏遮阳与建筑表皮种植的建筑自适应表皮(Adaptive Facade)为城市可持续性提供了新机会,但如何快速准确预测电能与作物产出是设计前期关键问题之一。为解决此问题,以城市居住建筑为例,提出... 作为应对环境与能源问题的解决办法,耦合动态光伏遮阳与建筑表皮种植的建筑自适应表皮(Adaptive Facade)为城市可持续性提供了新机会,但如何快速准确预测电能与作物产出是设计前期关键问题之一。为解决此问题,以城市居住建筑为例,提出基于机器学习神经网络模型的产出性能预测方法,以替代传统光伏软件模拟与作物产出估算方法。首先建立由实测数据训练并进行差异性激活函数对比择优的机器学习神经网络预测模型,进而搭建交互界面预测平台。结果显示,与基础案例相比,建筑自适应表皮显著提高室内热舒适时间比,降低室内眩光,且满足家庭年用电需求9.3%~10.9%(新加坡)、8.4%~9.8%(海口)以及家庭全年蔬菜需求32%(新加坡)、27.6%(海口),该预测方法展现了预测过程的便捷性与预测结果的可靠性,推动了建筑自适应表皮在可持续城市人居环境建设领域的应用。 展开更多
关键词 建筑自适应表皮 城市居住建筑 神经网络 建筑光伏一体化 建筑农业一体化 预测方法
在线阅读 下载PDF
船舶类量化神经网络自适应运动控制方法研究
7
作者 郁榴华 潘慧君 +2 位作者 林艳 顾胜 王旭 《舰船科学技术》 北大核心 2024年第15期34-39,共6页
研究船舶类航向自适应运动控制方法有助于加快解决船舶在海上通讯带宽受限情况下航向跟踪检测困难和控制效果差的问题。基于RBF神经网络,采用一种经典非线性运动解析模型来描述通信信号输入量化过程,无限逼近于航向控制系统中的未知非... 研究船舶类航向自适应运动控制方法有助于加快解决船舶在海上通讯带宽受限情况下航向跟踪检测困难和控制效果差的问题。基于RBF神经网络,采用一种经典非线性运动解析模型来描述通信信号输入量化过程,无限逼近于航向控制系统中的未知非线性项来消除隐性不确定项因子对控制系统的影响,与此同时模型中所设计的RBF自适应量化控制器不需要对先验信息进行量化参数处理,不仅可以保证有效跟踪和控制的同时,还可以减轻通信的传输负担、减少执行频次和降低系统控制幅度。本文基于Lyapunov稳定性理论证明了所提出的带有输入量化的RBF神经网络自适应闭环控制系统的稳定性,并在Matlab Simulink环境中构建仿真模型分析,论证了所设计的运动控制方法的有效性。 展开更多
关键词 自适应控制方法 RBF神经网络 船舶类航向控制 量化控制 运动解析模型
在线阅读 下载PDF
一种基于小波神经网络的自适应控制方法 被引量:11
8
作者 方浩 薛培鼎 冯祖仁 《西安交通大学学报》 EI CAS CSCD 北大核心 2000年第2期75-79,共5页
提出了一种基于小波神经网络的自适应控制方法,该方法利用两个小波神经网络作为自适应控制系统的辨识器和控制器来构成自适应控制系统.由于小波函数具有紧支性以及神经网络的非线性映射能力,因而在所构成的控制系统中,辨识器能更准确地... 提出了一种基于小波神经网络的自适应控制方法,该方法利用两个小波神经网络作为自适应控制系统的辨识器和控制器来构成自适应控制系统.由于小波函数具有紧支性以及神经网络的非线性映射能力,因而在所构成的控制系统中,辨识器能更准确地近似具有较强非线性被控对象的动态特性,控制器能产生较为复杂的控制规律.仿真结果表明。 展开更多
关键词 自适应控制 神经网络 小波逼近 仿真 辨识器
在线阅读 下载PDF
基于自适应小波神经网络的复杂系统模式识别方法 被引量:5
9
作者 刘经纬 王普 杨蕾 《北京工业大学学报》 CAS CSCD 北大核心 2014年第6期843-850,共8页
针对传统神经网络应用于复杂系统建模和辨识中存在的训练效率、精度瓶颈问题,提出了一种自适应小波神经网络方法(adaptive wavelet neural network,AWNN).首先,通过设计自适应层、综合层,使神经网络能根据待处理的系统的样本数据特征自... 针对传统神经网络应用于复杂系统建模和辨识中存在的训练效率、精度瓶颈问题,提出了一种自适应小波神经网络方法(adaptive wavelet neural network,AWNN).首先,通过设计自适应层、综合层,使神经网络能根据待处理的系统的样本数据特征自适应工作于最佳工作区间;然后,通过将小波分析方法与对经典的基于误差反向传播算法的神经网络(back propagation neural network,BPNN)、径向基神经网络(radical basis function neural network,RBFNN)结合,保留了上述方法的优点,克服了传统神经网络方法各自的问题;最后,通过对BPNN、RBFNN和AWNN方法进行计算机仿真实验,验证了各算法的可行性、可达性和算法参数特性.实验结果表明:AWNN方法具有更快的收敛速度、更高的精度和更好的鲁棒性. 展开更多
关键词 自适应小波神经网络 小波分析 BP神经网络 RBF神经网络
在线阅读 下载PDF
自适应多层小波神经网络建模方法 被引量:1
10
作者 刘霞 王焕勇 刘铁男 《大庆石油学院学报》 CAS 北大核心 2006年第3期102-104,共3页
基于小波多分辨率分析,提出了一种自适应多层小波神经网络的建模方法.该网络由平滑子网和多层细节子网组成.为改善模型精度,可递推并入新的细节子网,并且新网的训练不影响以前网络训练结果.应用遗传算法辨识多层小波网络的结构,用带遗... 基于小波多分辨率分析,提出了一种自适应多层小波神经网络的建模方法.该网络由平滑子网和多层细节子网组成.为改善模型精度,可递推并入新的细节子网,并且新网的训练不影响以前网络训练结果.应用遗传算法辨识多层小波网络的结构,用带遗忘因子的递推最小二乘法辨识网络的权值,较好解决了小波网络的结构优化问题.仿真表明:随着分阶层数的增加,网络的逼近误差逐渐下降,三层自适应小波网络即能满足建模精度要求. 展开更多
关键词 遗传算法 自适应多层小波神经网络 递推最小二乘法
在线阅读 下载PDF
自适应提升小波神经网络光纤陀螺滤波方法 被引量:1
11
作者 党淑雯 《弹箭与制导学报》 CSCD 北大核心 2013年第5期8-10,共3页
采用传统滤波方法很难有效滤除光纤陀螺输出信号中的随机噪声。提出一种基于提升小波神经网络的自适应阈值选取滤波方法对光纤陀螺的输出信号进行滤波,进而提高光纤陀螺的精度。算法包括小波提升格式转换、提升小波分解、自适应阈值选... 采用传统滤波方法很难有效滤除光纤陀螺输出信号中的随机噪声。提出一种基于提升小波神经网络的自适应阈值选取滤波方法对光纤陀螺的输出信号进行滤波,进而提高光纤陀螺的精度。算法包括小波提升格式转换、提升小波分解、自适应阈值选取及小波神经网络滤波。通过仿真实验将传统小波方法、经验模态分解方法与新方法进行比较,实验结果验证了新方法的有效性。 展开更多
关键词 信号处理 提升小波 小波神经网络 分形噪声 光纤陀螺 自适应
在线阅读 下载PDF
基于小波变换与IAGA-BP神经网络的短期风电功率预测 被引量:4
12
作者 孙国良 伊力哈木·亚尔买买提 +3 位作者 张宽 吐松江·卡日 李振恩 邸强 《电测与仪表》 北大核心 2024年第5期126-134,145,共10页
为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风... 为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风向、历史风功率的不同频率特征信号,并引入改进自适应遗传算法(IAGA)对各序列BP神经网络的初始权值与阈值寻优,使用Sigmiod函数通过适应度值自适应改变交叉概率与变异概率;构建各序列的WT-IAGA-BP模型对短期风功率组合预测。通过仿真分析,并与ELM、IAGA-BP、WT-ELM及WT-LSSVM方法对比,验证该方法具有更高的预测精度和更好的预测性能。 展开更多
关键词 风电功率预测 数据清洗 小波变换 改进自适应遗传算法 神经网络
在线阅读 下载PDF
基于自适应RBF神经网络的连续压力波信号滤波方法 被引量:10
13
作者 宋晓健 刘勇 +3 位作者 薛文伯 马鸿彦 陈维海 陈菲 《西安石油大学学报(自然科学版)》 CAS 北大核心 2021年第4期83-90,97,共9页
由于钻井液连续压力波信号与正脉冲压力信号检测原理不同,致使固定参数滤波方法存在检测特征点时间不准确、误码率高等问题。针对该问题提出一种小波包变换结合自适应变步长RBF神经网络非线性滤波器的滤波方法。该方法首先对输入的连续... 由于钻井液连续压力波信号与正脉冲压力信号检测原理不同,致使固定参数滤波方法存在检测特征点时间不准确、误码率高等问题。针对该问题提出一种小波包变换结合自适应变步长RBF神经网络非线性滤波器的滤波方法。该方法首先对输入的连续压力波信号进行小波包变换,运用分层阈值滤波算法和奇异值分解算法,分离出含噪声的有用连续压力波信号;对输入的不发码信号进行带通滤波,分离出噪声相关信号。然后将上述两路信号输入RBF神经网络中,通过自适应变步长滤波算法进行滤波处理,输出有用连续压力波信号。仿真结果表明:该滤波方法与固定参数滤波方法相比,滤波后信号与原信号的相关系数、均方误差、信噪比都得到了提升。现场应用中,相比固定参数滤波算法误码率降低10%,连续压力波信号的噪声得到有效抑制。 展开更多
关键词 连续随钻测量系统 钻井液 检测 RBF神经网络 自适应变步长滤算法
在线阅读 下载PDF
基于非下采样剪切波变换—参数自适应脉冲耦合神经网络的属性融合裂缝预测方法 被引量:4
14
作者 汤韦 李景叶 +3 位作者 王建花 薄昕 耿伟恒 叶玮 《石油地球物理勘探》 EI CSCD 北大核心 2022年第1期52-61,I0002,I0003,共12页
常用的叠后地震属性主要有相干体(描述波形相似性)、曲率体(表征构造应力引起的地层弯曲程度)、倾角体(刻画地层构造变化特征)等,但仅仅依靠单一属性很难准确地预测地下裂缝分布情况。为此,提出一种基于非下采样剪切波变换(NSST)—参数... 常用的叠后地震属性主要有相干体(描述波形相似性)、曲率体(表征构造应力引起的地层弯曲程度)、倾角体(刻画地层构造变化特征)等,但仅仅依靠单一属性很难准确地预测地下裂缝分布情况。为此,提出一种基于非下采样剪切波变换(NSST)—参数自适应脉冲耦合神经网络(PA-PCNN)的属性融合裂缝预测方法,该方法基于NSST分解算法,将多种属性数据分解为高、低频子带,将融合后的多尺度、多方向高、低频子带进行数据重构,得到最终的多属性融合结果,可进一步提取裂缝的轮廓及细节信息。具体步骤为:①提取描述相同尺度裂缝的多种地震属性(相干、曲率及倾角等属性),通过NSST将多种属性分解为高、低频子带,其中高频子带包含更多的裂缝细节信息,低频子带可更好地刻画裂缝轮廓且具有丰富的能量信息。②对高频子带运用PA-PCNN模型进行融合,无需人工设置参数,得到更全面的高频数据;结合八邻域的改进拉普拉斯算子加权和与局部能量加权方法对低频子带进行融合,使低频数据更好地保留细节及能量信息,以得到丰富的低频数据。③通过逆NSST方法有效地完成属性融合裂缝预测。运用所提方法对M区属性数据进行测试,并对比了不同方法的属性融合裂缝预测结果,证明基于NSST—PAPCNN的属性融合裂缝预测方法能够更有效地预测裂缝。 展开更多
关键词 非下采样剪切变换 脉冲偶合神经网络 自适应参数 属性融合 裂缝预测
在线阅读 下载PDF
一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法 被引量:66
15
作者 张士文 张峰 +2 位作者 王子骏 顾昊英 宁庆 《电工技术学报》 EI CSCD 北大核心 2014年第6期290-295,302,共7页
针对交流串联型故障电弧发生时回路电流幅值较小、传统线路保护装置不能有效检测的问题,提出一种基于小波变换能量与神经网络结合且适用于多种典型负载的串联型低压交流故障电弧辨识方法。利用自制的电弧发生装置模拟产生低压交流故障电... 针对交流串联型故障电弧发生时回路电流幅值较小、传统线路保护装置不能有效检测的问题,提出一种基于小波变换能量与神经网络结合且适用于多种典型负载的串联型低压交流故障电弧辨识方法。利用自制的电弧发生装置模拟产生低压交流故障电弧,获取了6种典型家用负载情况下电路正常运行及产生串联型故障电弧时回路的电流信号。对采集的信号进行小波分解,将各层细节信号能量的平均值和标准差输入BP神经网络后构成小波神经网络,实现对不同负载测试样本的辨识。采用粒子群优化算法计算神经网络训练初始值,利用自适应学习率方法提高了训练速度。算法输出结果含义明确,输入层特征量选取合理。实验结果表明,采用该方法进行故障电弧辨识的准确率达到95%以上。 展开更多
关键词 故障电弧 小波变换 神经网络 粒子群算法 辨识方法
在线阅读 下载PDF
利用小波神经网络的电力变压器故障诊断方法 被引量:24
16
作者 陈伟根 潘翀 +2 位作者 王有元 云玉新 孙才新 《高电压技术》 EI CAS CSCD 北大核心 2007年第8期52-55,共4页
为提高变压器传统油中溶解气体分析(DGA)的故障诊断能力,提出了一种利用小波神经网络(WNN)的变压器故障诊断方法。WNN隐含层采用离散仿射小波函数,仿照前馈BP神经网络算法构造WNN,引入学习率和动量系数来训练网络。实验结果表明:相同条... 为提高变压器传统油中溶解气体分析(DGA)的故障诊断能力,提出了一种利用小波神经网络(WNN)的变压器故障诊断方法。WNN隐含层采用离散仿射小波函数,仿照前馈BP神经网络算法构造WNN,引入学习率和动量系数来训练网络。实验结果表明:相同条件下,较之传统比值法与BP神经网络,WNN的故障模式识别准确率更高,对照BP神经网络,所提出的WNN变压器故障诊断方法在稳定性和收敛时间方面表现更优。 展开更多
关键词 变压器 溶解气体分析 人工神经网络 小波神经网络 故障诊断 方法
在线阅读 下载PDF
多谱自适应小波和盲源分离耦合的生理信号降噪方法
17
作者 王振宇 向泽锐 +2 位作者 支锦亦 丁铁成 邹瑞 《北京航空航天大学学报》 北大核心 2025年第3期910-921,共12页
为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信... 为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。 展开更多
关键词 多谱自适应小波 盲源分离 小波变换 降噪方法 生理信号
在线阅读 下载PDF
基于改进CFD与小波混合神经网络组合的风电场功率预测方法 被引量:21
18
作者 崔嘉 杨俊友 +3 位作者 杨理践 高凯旻 宋志成 高子昂 《电网技术》 EI CSCD 北大核心 2017年第1期79-85,共7页
风的间歇性和时变性制约电力系统能量平衡,准确的风电功率预测有助于电网减小旋转备用、合理制定检修计划。为减小预测误差,提出一种基于多计算流体力学(computational fluid dynamics,CFD)模型的新型风电场组合功率预测方法。首先,利... 风的间歇性和时变性制约电力系统能量平衡,准确的风电功率预测有助于电网减小旋转备用、合理制定检修计划。为减小预测误差,提出一种基于多计算流体力学(computational fluid dynamics,CFD)模型的新型风电场组合功率预测方法。首先,利用小波混合神经网络对数值天气预报降尺度;其次,提出了考虑多重尾流的风电场物理CFD模型,并建立了根据测风塔风速外推各台风电机组风速的加速比相关系数;最后,提出了仅考虑自由流场和带有激盘模型的变权重组合流场模型。实际算例仿真证明,所提出的预测方法更准确地反映了风电场实际运行状态,有效提高了预测准确性。 展开更多
关键词 功率预测 组合方法 计算流体力学 小波混合神经网络 尾流模型
在线阅读 下载PDF
电力系统短期负荷预报的小波-神经网络-PARIMA方法 被引量:13
19
作者 冉启文 单永正 +1 位作者 王骐 王建赜 《中国电机工程学报》 EI CSCD 北大核心 2003年第3期38-42,68,共6页
针对电力系统负荷具有拟周期性、非平稳性、非线性等特点,提出一种小波-神经网络-PARIMA模型并研究它在电力系统短期负荷预报中的应用:利用小波变换提取和分离负荷的各种隐周期和非线性,把小波分解的特性和分解数据随尺度倍增而倍减的... 针对电力系统负荷具有拟周期性、非平稳性、非线性等特点,提出一种小波-神经网络-PARIMA模型并研究它在电力系统短期负荷预报中的应用:利用小波变换提取和分离负荷的各种隐周期和非线性,把小波分解的特性和分解数据随尺度倍增而倍减的规律用于感知机神经网络(MLP)和周期自回归移动模型(PARIMA)的建模,各尺度小波分解用MLP进行建模和预报,最大尺度上的尺度分解用 PARIMA进行建模和预报。最后,利用径向基函数网络(RBF)将各尺度域的预报结果组合成为负荷最终预报。实例说明,该方法能够揭示负荷的拟周期性、非平稳性、非线性,在电力系统短期负荷预报中的应用是成功的和有效的。 展开更多
关键词 电力系统 短期负荷预报 小波 神经网络 PARIMA方法 尺度函数
在线阅读 下载PDF
一种自适应模糊小波神经网络及其在交流伺服控制中的应用 被引量:7
20
作者 侯润民 刘荣忠 +2 位作者 高强 王力 邓桐彬 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期781-788,共8页
针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRW... 针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。 展开更多
关键词 兵器科学与技术 大功率交流伺服系统 自回归小波神经网络 模糊小波神经网络间接自适应控制器 模糊小波神经网络
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部