新能源电源通过逆变器实现并网,其并网系统的电压幅值、相位、频率等物理量在电磁、机电等多时间尺度均存在强交互耦合,准确把握并网逆变器的同步稳定主导行为特征是目前的热点问题。为此,提出了一种多次密度空间聚类(density-based spa...新能源电源通过逆变器实现并网,其并网系统的电压幅值、相位、频率等物理量在电磁、机电等多时间尺度均存在强交互耦合,准确把握并网逆变器的同步稳定主导行为特征是目前的热点问题。为此,提出了一种多次密度空间聚类(density-based spatial clustering of applications with Noise,DBSCAN)算法来分析多逆变器并网系统同步稳定的物理表征。首先建立了跟网型和构网型逆变器并网模型,分析了其同步控制单元的同步特性;其次利用所提算法实现对并网逆变器与公共连接点的相位差、逆变器功角、系统频率等仿真数据的聚类和分类;最后通过仿真分析表明,逆变器并网系统同步稳定特征表现为功角逐步恢复原来运行状态和新稳态,此外,系统同步稳定与频率稳定具有一致性。不同的是,跟网型同步控制单元成功锁相可以表征其系统的同步稳定,而构网型同步控制单元无法表征。展开更多
针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想...针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。展开更多
针对雷达信号分选过程依赖先验知识、参数适配调优困难等问题,提出一种基于自约束搜索密度聚类的参数自适应信号分选方法。该方法在点序识别聚类结构(ordering points to identify the clustering structure,OPTICS)算法生成可达距离序...针对雷达信号分选过程依赖先验知识、参数适配调优困难等问题,提出一种基于自约束搜索密度聚类的参数自适应信号分选方法。该方法在点序识别聚类结构(ordering points to identify the clustering structure,OPTICS)算法生成可达距离序列的基础上,引入一种启发式的自约束搜索机制,该机制能够自动分析数据集的内在结构,根据其数据特性自适应划分簇。通过自动调整超参数,该算法能够有效处理不同参数分布的脉冲描述字(pulse description word,PDW)数据。仿真实验表明,在无先验知识依赖情况下,所提算法在雷达信号的分选准确率和抗干扰能力方面均优于传统方法,干扰脉冲比例不高于60%的复杂电磁环境中雷达信号分选准确率达到98%以上。展开更多
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点...为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.展开更多
文摘新能源电源通过逆变器实现并网,其并网系统的电压幅值、相位、频率等物理量在电磁、机电等多时间尺度均存在强交互耦合,准确把握并网逆变器的同步稳定主导行为特征是目前的热点问题。为此,提出了一种多次密度空间聚类(density-based spatial clustering of applications with Noise,DBSCAN)算法来分析多逆变器并网系统同步稳定的物理表征。首先建立了跟网型和构网型逆变器并网模型,分析了其同步控制单元的同步特性;其次利用所提算法实现对并网逆变器与公共连接点的相位差、逆变器功角、系统频率等仿真数据的聚类和分类;最后通过仿真分析表明,逆变器并网系统同步稳定特征表现为功角逐步恢复原来运行状态和新稳态,此外,系统同步稳定与频率稳定具有一致性。不同的是,跟网型同步控制单元成功锁相可以表征其系统的同步稳定,而构网型同步控制单元无法表征。
文摘针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。
文摘针对雷达信号分选过程依赖先验知识、参数适配调优困难等问题,提出一种基于自约束搜索密度聚类的参数自适应信号分选方法。该方法在点序识别聚类结构(ordering points to identify the clustering structure,OPTICS)算法生成可达距离序列的基础上,引入一种启发式的自约束搜索机制,该机制能够自动分析数据集的内在结构,根据其数据特性自适应划分簇。通过自动调整超参数,该算法能够有效处理不同参数分布的脉冲描述字(pulse description word,PDW)数据。仿真实验表明,在无先验知识依赖情况下,所提算法在雷达信号的分选准确率和抗干扰能力方面均优于传统方法,干扰脉冲比例不高于60%的复杂电磁环境中雷达信号分选准确率达到98%以上。
文摘为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.