期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
基于自适应H_(∞)容积卡尔曼滤波的配电网动态状态估计方法
1
作者 粟子聪 廉政 《分布式能源》 2024年第4期43-50,共8页
受负荷随机变化、需求响应参与、分布式电源波动、量测装置种类多等因素的影响,容易出现配电网量测数据值异常,导致配电网动态状态估计精度下降。为了提高配电网状态估计的精度,提出了一种基于自适应H_(∞)容积卡尔曼滤波的配电网动态... 受负荷随机变化、需求响应参与、分布式电源波动、量测装置种类多等因素的影响,容易出现配电网量测数据值异常,导致配电网动态状态估计精度下降。为了提高配电网状态估计的精度,提出了一种基于自适应H_(∞)容积卡尔曼滤波的配电网动态状态估计方法。首先,在容积卡尔曼滤波基础上,将自适应因子和H_(∞)滤波器相结合,对模型误差问题进行处理与限制。其次,结合噪声估值器,对过程噪声中的参数进行在线估计,减少噪声对预测误差的影响。最后,对典型配电网69节点系统进行仿真,仿真结果表明:该方法在系统正常运行、需求响应参与削峰填谷以及负荷发生突变这3种场景下,其估计精度均提高10%以上,保持了相对高的估计精度。 展开更多
关键词 状态估计 容积卡尔曼滤波 H_(∞)滤波器 噪声估值器 需求响应
在线阅读 下载PDF
基于GA-LSTM自适应卡尔曼滤波的路面不平度识别 被引量:4
2
作者 李韶华 李健玮 冯桂珍 《振动与冲击》 EI CSCD 北大核心 2024年第9期121-130,共10页
准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-t... 准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-term memory networks,LSTM)自适应卡尔曼滤波的路面不平度识别算法。基于2自由度车辆悬架模型,通过灰色关联法选择LSTM神经网络的特征输入变量,并采用GA优化LSTM神经网络的模型参数以准确识别路面等级,并据此实时更新卡尔曼滤波器算法中的噪声矩阵,实现了在复杂路况下对路面不平度的自适应识别。仿真和试验研究表明,所提出的基于GA-LSTM自适应卡尔曼滤波算法能够快速准确的识别路面不平度与路面等级,与传统卡尔曼滤波算法相比,相关系数、均方根误差和最大绝对误差分别提高3.11%、37.5%和51.2%,表明所提算法对复杂工况具有很好的自适应能力。 展开更多
关键词 路面不平度识别 自适应卡尔曼滤波器 GA-LSTM 灰色关联法
在线阅读 下载PDF
强跟踪自适应平方根容积卡尔曼滤波算法 被引量:24
3
作者 徐树生 林孝工 李新飞 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2394-2400,共7页
针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代... 针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代替扩展卡尔曼滤波构建强跟踪自适应SRCKF.该算法兼具STF与自适应SRCKF的优点,在系统同时存在模型不确定性及不良测量时具有良好的滤波性能.仿真验证了所建算法的有效性. 展开更多
关键词 强跟踪滤波器 平方根容积卡尔曼滤波 自适应滤波 鲁棒性
在线阅读 下载PDF
一种自适应联合卡尔曼滤波器及其在车载GPS/DR组合导航系统中的应用研究 被引量:19
4
作者 房建成 申功勋 万德钧 《中国惯性技术学报》 EI CSCD 1998年第4期2-7,共6页
—本文设计了实现车载GPS/DR组合导航系统最优综合的联合卡尔曼滤波器,并给出了滤波算法。提出了一种自适应联合卡尔曼滤波器结构及其算法,并应用于GPS/DR组合导航系统的最优综合校正中。理论分析及计算机仿真结果均表明... —本文设计了实现车载GPS/DR组合导航系统最优综合的联合卡尔曼滤波器,并给出了滤波算法。提出了一种自适应联合卡尔曼滤波器结构及其算法,并应用于GPS/DR组合导航系统的最优综合校正中。理论分析及计算机仿真结果均表明,应用该自适应联合卡尔曼滤波器可大大提高车载GPS/DR组合导航系统的定位精度及容错能力。 展开更多
关键词 GPS 航位推算系统 组合导航 陆地导航 联合卡尔曼滤波器 自适应算法
在线阅读 下载PDF
基于模糊逻辑控制的舰船组合导航自适应卡尔曼滤波器(英文) 被引量:5
5
作者 傅军 张晓峰 +2 位作者 卞鸿魏 许江宁 朱涛 《中国惯性技术学报》 EI CSCD 2007年第4期412-417,共6页
双天线GPS提供的载体姿态信息与惯性导航系统信息进行融合可提高组合导航系统的性能。由于在实际应用中,GPS接收机可能会受到某种干扰无法提供舰船航向信息,从而降低传统卡尔曼滤波器的性能。因而提出了一种新的基于模糊逻辑控制的自适... 双天线GPS提供的载体姿态信息与惯性导航系统信息进行融合可提高组合导航系统的性能。由于在实际应用中,GPS接收机可能会受到某种干扰无法提供舰船航向信息,从而降低传统卡尔曼滤波器的性能。因而提出了一种新的基于模糊逻辑控制的自适应卡尔曼滤波器。改进后的卡尔曼滤波器使用两个模糊逻辑控制器来调整两个系统的组合模式,并且根据卡尔曼滤波器的内部状态、GPS工作状态和舰船运动状态来计算卡尔曼增益。通过使用INS和GPS的实测数据验证,这种基于模糊逻辑控制的自适应卡尔曼滤波器能有效的提高INS/GPS组合导航系统的性能。 展开更多
关键词 组合导航 信息融合 模糊逻辑 自适应卡尔曼滤波器
在线阅读 下载PDF
一种基于预测滤波器的自适应卡尔曼滤波算法 被引量:4
6
作者 韩璐 景占荣 段哲民 《火力与指挥控制》 CSCD 北大核心 2010年第3期110-113,共4页
针对系统过程噪声统计特性不确切或未知的条件下,研究了一种基于预测滤波器的自适应卡尔曼滤波算法。由预测滤波器实时估计系统模型误差及其协方差矩阵,再用其修正系统状态预测值及预测误差协方差矩阵,从而自适应调节卡尔曼增益。将该... 针对系统过程噪声统计特性不确切或未知的条件下,研究了一种基于预测滤波器的自适应卡尔曼滤波算法。由预测滤波器实时估计系统模型误差及其协方差矩阵,再用其修正系统状态预测值及预测误差协方差矩阵,从而自适应调节卡尔曼增益。将该算法应用于弹载SINS/GPS紧耦合组合导航系统并与普通卡尔曼滤波、基于新息的移动开窗自适应卡尔曼滤波进行了对比,仿真结果说明该自适应滤波算法具有更高的可靠性和精度。 展开更多
关键词 预测滤波器 自适应卡尔曼滤波 捷联/卫星 紧耦合 组合导航
在线阅读 下载PDF
H ∞ 模糊自适应容积卡尔曼滤波 被引量:3
7
作者 刘胜 牛鸿敏 +1 位作者 张兰勇 郭晓杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期404-410,共7页
针对滤波过程中噪声统计特性不准确及非零均值噪声统计特性的情况,本文依据H∞卡尔曼滤波和容积卡尔曼滤波理论,设计了一种H∞模糊自适应容积卡尔曼滤波方法,有效地提高滤波的精度以及对系统未建模动态的鲁棒性。考虑到容积卡尔曼滤波... 针对滤波过程中噪声统计特性不准确及非零均值噪声统计特性的情况,本文依据H∞卡尔曼滤波和容积卡尔曼滤波理论,设计了一种H∞模糊自适应容积卡尔曼滤波方法,有效地提高滤波的精度以及对系统未建模动态的鲁棒性。考虑到容积卡尔曼滤波过程中需要已知噪声的先验统计特性的情况,提出了一种模糊自适应方法对系统噪声和测量噪声进行估计,从而提高滤波的稳定性和收敛的快速性。通过仿真实验表明:本文提出的H∞自适应容积卡尔曼滤波能够对噪声特性进行有效的估计,在系统存在参数摄动的情况下具有更高的鲁棒性。 展开更多
关键词 H∞滤波 容积卡尔曼滤波 非线性滤波 模糊规则 自适应算法 噪声统计估计 线性化 鲁棒性
在线阅读 下载PDF
应用自适应容积卡尔曼滤波改善组合导航性能 被引量:5
8
作者 史岳鹏 汤显峰 周溪召 《中国航海》 CSCD 北大核心 2013年第4期12-16,共5页
基于状态和测量模型扰动的有色噪声建模,研究应用自适应容积卡尔曼(Kalman)滤波来改善北斗导航系统/航位推算(BDNS/DR)组合导航系统的性能。利用有色噪声白化技术获得等价的白噪声组合导航系统;通过将一种自适应调节因子计算与平方根求... 基于状态和测量模型扰动的有色噪声建模,研究应用自适应容积卡尔曼(Kalman)滤波来改善北斗导航系统/航位推算(BDNS/DR)组合导航系统的性能。利用有色噪声白化技术获得等价的白噪声组合导航系统;通过将一种自适应调节因子计算与平方根求容积卡尔曼滤波结合获得一类自适应容积卡尔曼滤波(ASCKF),应用该算法改善组合导航系统的精度和稳定性。通过两个仿真实例验证了新算法的有效性。 展开更多
关键词 船舶、舰舶工程 舰船组合导航 北斗导航系统 航位推算 自适应 平方根求容积卡尔曼滤波 有色噪声
在线阅读 下载PDF
自适应广义卡尔曼滤波器在反辐射导弹中的应用 被引量:4
9
作者 李常平 胡恒章 张志高 《航天控制》 CSCD 北大核心 1997年第3期9-15,共7页
抗目标辐射源关机的能力是反辐射导弹的关键战术技术性能之一,采用增广状态的广义卡尔曼滤波(EKF)与Sage-Husa自适应滤波相结合的方法,解决了在被动雷达导引头测量存在常值偏差和随机噪声,且随机噪声方差未知情况下所测角度的滤... 抗目标辐射源关机的能力是反辐射导弹的关键战术技术性能之一,采用增广状态的广义卡尔曼滤波(EKF)与Sage-Husa自适应滤波相结合的方法,解决了在被动雷达导引头测量存在常值偏差和随机噪声,且随机噪声方差未知情况下所测角度的滤波问题,从而在目标辐射源关机时刻较精确地建立起目标视线在惯导坐标系中的方位坐标(简称惯性基准),进而利用速度追踪法导引导弹攻击目标。给出了以某型导弹为背景的全空间弹道数学仿真结果。 展开更多
关键词 自适应滤波器 卡尔曼滤波 反辐射导弹 导弹
在线阅读 下载PDF
带遗忘因子的自适应迭代容积卡尔曼滤波算法 被引量:6
10
作者 戴文战 黄晓姣 沈忱 《科技通报》 2019年第1期181-185,共5页
自适应迭代滤波算法作为典型的滤波改进算法,有效提高了滤波精度,但旧数据影响过大,导致滤波发散;遗忘因子滤波算法虽然引进遗忘因子减少了旧数据的影响,但是其滤波算法本身的精度不高,难以处理高度非线性问题。基于此,本文借鉴遗忘因... 自适应迭代滤波算法作为典型的滤波改进算法,有效提高了滤波精度,但旧数据影响过大,导致滤波发散;遗忘因子滤波算法虽然引进遗忘因子减少了旧数据的影响,但是其滤波算法本身的精度不高,难以处理高度非线性问题。基于此,本文借鉴遗忘因子的滤波算法和自适应迭代无迹卡尔曼滤波算法的思想,把遗忘因子与自适应迭代容积卡尔曼滤波相结合,这样既可以发挥遗忘因子的作用,减小历史数据对滤波结果的影响,又可以提高滤波算法本身精度和处理非线性问题的能力。仿真实验表明,该算法可以有效减小误差且提高滤波精度。 展开更多
关键词 遗忘因子 容积卡尔曼滤波 自适应迭代
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的交互多模型算法
11
作者 杜云 张静怡 《科技创新与应用》 2019年第25期22-25,共4页
ADS-B航迹处理主要包括航迹数据滤波和滤波后数据可靠性的判断。飞机飞行运动复杂,而报文需要在飞行过程中向外界发送,此时报文会受到来自外界的影响和干扰,从而使航迹信息出现误差或丢失。为提高ADS-B航迹报文的准确性,文章采用了交互... ADS-B航迹处理主要包括航迹数据滤波和滤波后数据可靠性的判断。飞机飞行运动复杂,而报文需要在飞行过程中向外界发送,此时报文会受到来自外界的影响和干扰,从而使航迹信息出现误差或丢失。为提高ADS-B航迹报文的准确性,文章采用了交互多模型滤波算法,将自适应容积卡尔曼滤波器作为交互多模型滤波算法的滤波器,并将当前统计模型作为交互多模型的子模型。仿真结果表明,论文改进的算法提高了滤波算法的滤波性能,相较于传统的交互多模型滤波算法具有更高的滤波精度。 展开更多
关键词 航迹滤波 当前统计模型 交互多模型 自适应容积卡尔曼滤波算法
在线阅读 下载PDF
低复杂度自适应容积卡尔曼滤波算法 被引量:9
12
作者 李春辉 马健 +1 位作者 杨永建 甘轶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页
确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适... 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 展开更多
关键词 容积卡尔曼滤波(CKF) 目标模型不确定性 强跟踪滤波器 自适应修正 算法复杂度
在线阅读 下载PDF
变循环发动机自适应无迹卡尔曼滤波器设计 被引量:3
13
作者 肖红亮 彭凯 +3 位作者 王占胜 符江锋 陈昊 闫波 《推进技术》 EI CAS CSCD 北大核心 2023年第5期307-314,共8页
针对变循环发动机健康参数估计问题,设计了一种自适应无迹卡尔曼滤波器。该算法通过最大化后验密度函数来建立过程噪声协方差和测量噪声协方差的自适应更新方程,以改善传统无迹卡尔曼滤波器设计中先验参数需要根据经验来设置,进而导致... 针对变循环发动机健康参数估计问题,设计了一种自适应无迹卡尔曼滤波器。该算法通过最大化后验密度函数来建立过程噪声协方差和测量噪声协方差的自适应更新方程,以改善传统无迹卡尔曼滤波器设计中先验参数需要根据经验来设置,进而导致滤波器性能受人为因素影响较大的问题。以带核心机驱动风扇级的变循环发动机为对象,进行了不可测参数估计仿真试验,对所设计的自适应无迹卡尔曼滤波器算法进行了仿真对比验证。结果表明:在单参数退化条件下,健康参数平均估计误差不大于2%;多参数退化条件下,健康参数平均估计误差不大于1.8%;该算法性能优于增广卡尔曼滤波器、传统无迹卡尔曼滤波器,相较于传统无迹卡尔曼滤波器性能提升9.5%。 展开更多
关键词 变循环发动机 参数估计 卡尔曼滤波器 自适应无迹卡尔曼滤波器 概率密度函数
在线阅读 下载PDF
自适应强跟踪Sage-Husa卡尔曼滤波器载波环设计 被引量:5
14
作者 王福军 丁小燕 +1 位作者 王前 白英广 《电光与控制》 CSCD 北大核心 2019年第10期12-16,共5页
针对Sage-Husa自适应卡尔曼滤波算法易引起发散且对初始条件的选取非常敏感的问题,提出一种自适应强跟踪Sage-Husa滤波算法。该算法从Sage-Husa自适应卡尔曼滤波算法出发,引入强跟踪技术,通过渐消因子在线修正一步预测误差协方差矩阵,... 针对Sage-Husa自适应卡尔曼滤波算法易引起发散且对初始条件的选取非常敏感的问题,提出一种自适应强跟踪Sage-Husa滤波算法。该算法从Sage-Husa自适应卡尔曼滤波算法出发,引入强跟踪技术,通过渐消因子在线修正一步预测误差协方差矩阵,使算法具有应对场景变化等不确定情况的能力,增强算法的鲁棒性;通过改进Sage-Husa自适应算法对噪声方差阵进行实时在线估计,使算法具有应对噪声变化的自适应能力,保证较好的跟踪精度。仿真结果表明,所提出的滤波算法能够有效提高载波环路的跟踪精度和鲁棒性。 展开更多
关键词 卡尔曼滤波器 Sage-Husa自适应滤波 强跟踪滤波 载波跟踪环路
在线阅读 下载PDF
统计容积卡尔曼滤波器的混合试验模型更新方法 被引量:5
15
作者 王涛 李勐 +2 位作者 孟丽岩 许国山 王贞 《振动与冲击》 EI CSCD 北大核心 2022年第11期72-82,155,共12页
为解决模型更新算法因初始参数选择不当对模型参数识别精度的影响,提出统计容积卡尔曼滤波器的混合试验模型更新方法。该方法采用容积卡尔曼滤波器算法多次识别模型参数,将统计后的参数识别值样本均值作为最终的识别结果,以弱化算法初... 为解决模型更新算法因初始参数选择不当对模型参数识别精度的影响,提出统计容积卡尔曼滤波器的混合试验模型更新方法。该方法采用容积卡尔曼滤波器算法多次识别模型参数,将统计后的参数识别值样本均值作为最终的识别结果,以弱化算法初始参数选择对参数识别结果的影响。应用统计容积卡尔曼滤波器对自复位摩擦耗能支撑模型进行在线参数识别,分析了在不同参数条件下统计容积卡尔曼滤波器的识别精度;针对两层带有自复位摩擦耗能支撑框架结构进行混合试验数值仿真。结果表明,基于统计容积卡尔曼滤波器的方法可以有效提高模型更新混合试验精度及鲁棒性。 展开更多
关键词 混合试验 模型更新 容积卡尔曼滤波器(CKF) 自复位摩擦耗能支撑 在线参数识别
在线阅读 下载PDF
自适应容积卡尔曼滤波在空间机动目标跟踪中的应用 被引量:4
16
作者 黄璜 林浩申 何兵 《电光与控制》 北大核心 2015年第6期56-59,共4页
针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对... 针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对滤波发散情况进行检测和抑制,有效克服了空间目标发生机动时标准滤波器无法快速准确对其进行跟踪的问题,提高了空间目标定位跟踪的数值稳定性。仿真表明:与标准SCKF相比,自适应SCKF有效地提高了机动目标被动定位跟踪的鲁棒性,具有较高的滤波精度和稳定性,同时具有良好的实时性,能更好地完成对空间机动目标的跟踪任务。 展开更多
关键词 机动目标 目标跟踪 自适应 容积卡尔曼滤波 强跟踪滤波
在线阅读 下载PDF
基于容积卡尔曼滤波-自适应PID的共轴无人机设计
17
作者 赵泽锴 陈增 +4 位作者 古依伶 王玲杜玉 彭晓波 冯文博 张明明 《科技创新与应用》 2023年第7期38-41,共4页
针对PID控制的共轴无人机控制参数不易整定且控制效果较差的问题,设计一款基于容积卡尔曼滤波-自适应PID的共轴反桨无人机。飞行姿态控制方案采用双闭环自适应PID算法,以得到较为理想的姿态控制效果;采用与普通多旋翼不同的气动布局,以... 针对PID控制的共轴无人机控制参数不易整定且控制效果较差的问题,设计一款基于容积卡尔曼滤波-自适应PID的共轴反桨无人机。飞行姿态控制方案采用双闭环自适应PID算法,以得到较为理想的姿态控制效果;采用与普通多旋翼不同的气动布局,以得到更长的续航时间与更理想的悬停稳定性。搭建自适应PID控制算法仿真模型,仿真结果显示,相较于PID算法,提出的自适应PID控制算法能够对姿态角进行更为理想的控制,达到稳定且高效的收敛效果,该自适应PID控制算法对共轴无人机的飞行姿态具有良好的控制能力。 展开更多
关键词 共轴无人机 容积卡尔曼滤波 自适应PID 姿态控制 仿真分析
在线阅读 下载PDF
基于模糊迭代均方根容积卡尔曼滤波的天基非合作目标跟踪 被引量:6
18
作者 岳聪 薄煜明 +2 位作者 吴盘龙 田梦楚 陈志敏 《中国惯性技术学报》 EI CSCD 北大核心 2017年第3期395-398,404,共5页
针对非合作航天器相对导航中测量噪声不确定的问题,提出了一种模糊迭代均方根容积卡尔曼滤波算法,实现对非合作目标相对状态的测量。该算法利用容积点均方根迭代策略和模糊推理系统实时调整改进容积卡尔曼滤波的量测噪声协方差阵权值,... 针对非合作航天器相对导航中测量噪声不确定的问题,提出了一种模糊迭代均方根容积卡尔曼滤波算法,实现对非合作目标相对状态的测量。该算法利用容积点均方根迭代策略和模糊推理系统实时调整改进容积卡尔曼滤波的量测噪声协方差阵权值,修正量测噪声协方差阵,使其接近真实噪声值,从而提高目标跟踪算法的自适应能力,提高了滤波精度。通过建立数学仿真模型,分别采用扩展卡尔曼滤波、容积卡尔曼滤波以及模糊迭代均方根容积卡尔曼滤波进行跟踪仿真,仿真结果表明,与标准容积卡尔曼滤波相比,该改进算法能够提高13.17%的跟踪精度。 展开更多
关键词 非合作目标 容积卡尔曼滤波 模糊推理系统 自适应滤波 目标跟踪
在线阅读 下载PDF
新型自适应容积卡尔曼滤波算法及其在目标跟踪中的应用 被引量:1
19
作者 黄硕 李冠男 +1 位作者 荆涛 曹洁 《现代信息科技》 2018年第2期62-66,共5页
针对标准容积卡尔曼滤波(CKF)在目标跟踪中出现的问题,根据系统噪声统计特性不准确或未知的特点,提出一种基于协方差匹配原则的自适应容积卡尔曼滤波算法。该算法通过利用新息序列与残差序列来实现对观测噪声协方差和过程噪声协方差矩... 针对标准容积卡尔曼滤波(CKF)在目标跟踪中出现的问题,根据系统噪声统计特性不准确或未知的特点,提出一种基于协方差匹配原则的自适应容积卡尔曼滤波算法。该算法通过利用新息序列与残差序列来实现对观测噪声协方差和过程噪声协方差矩阵的实时跟踪,进而进行在线调整噪声统计特性,能够有效的改善由于噪声特性未知所引起的滤波发散相关问题。将该算法应用在目标跟踪仿真实验中,结果表明,与标准CKF算法相比,在系统噪声统计特性未知的情况下,该算法具有更好的实时性,不仅抑制了滤波器的发散问题,而且提高了对目标的跟踪精度。 展开更多
关键词 容积卡尔曼滤波算法 协方差匹配 自适应滤波 目标跟踪
在线阅读 下载PDF
强跟踪-容积卡尔曼滤波在弹道式再入目标跟踪中的应用 被引量:10
20
作者 张龙 崔乃刚 +1 位作者 王小刚 白俞亮 《中国惯性技术学报》 EI CSCD 北大核心 2015年第2期211-218,共8页
对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面... 对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。 展开更多
关键词 弹道式再入目标跟踪 容积卡尔曼滤波 自适应渐消因子 非线性系统
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部