期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
多传感器自适应容积卡尔曼滤波融合算法 被引量:5
1
作者 敖志刚 唐长春 +2 位作者 付成群 郭杰 叶春雷 《计算机应用研究》 CSCD 北大核心 2014年第5期1312-1315,1331,共5页
当容积卡尔曼滤波的系统模型不准确或测量出现异常时容易出现滤波发散。为了解决这一问题,提出了一种自适应容积卡尔曼滤波算法,构造了一组噪声统计估计器对噪声的统计特征进行在线实时估计,并在测量异常时采用修正函数对滤波过程进行修... 当容积卡尔曼滤波的系统模型不准确或测量出现异常时容易出现滤波发散。为了解决这一问题,提出了一种自适应容积卡尔曼滤波算法,构造了一组噪声统计估计器对噪声的统计特征进行在线实时估计,并在测量异常时采用修正函数对滤波过程进行修正,有效提高了滤波估计的精度和对滤波发散的抑制能力;在集中式滤波结构和联邦式滤波结构的基础上,设计了一种基于自适应容积卡尔曼滤波算法的多传感器系统混合式组合滤波结构,并给出了融合各传感器的局部滤波信息以得到全局滤波估计的计算方法。以对车辆的定位导航为应用背景进行了仿真实验,仿真结果证明了所提方法的有效性。 展开更多
关键词 容积卡尔曼滤波 自适应 噪声统计估计器 修正函数 组合滤波 数据融合
在线阅读 下载PDF
强跟踪自适应平方根容积卡尔曼滤波算法 被引量:24
2
作者 徐树生 林孝工 李新飞 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2394-2400,共7页
针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代... 针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代替扩展卡尔曼滤波构建强跟踪自适应SRCKF.该算法兼具STF与自适应SRCKF的优点,在系统同时存在模型不确定性及不良测量时具有良好的滤波性能.仿真验证了所建算法的有效性. 展开更多
关键词 强跟踪滤波 平方根容积卡尔曼滤波 自适应滤波 鲁棒性
在线阅读 下载PDF
一种自适应变分贝叶斯容积卡尔曼滤波方法 被引量:9
3
作者 沈锋 徐广辉 桑靖 《电机与控制学报》 EI CSCD 北大核心 2015年第4期94-99,共6页
针对应用于非线性系统模型的容积卡尔曼滤波工作性能会受观测噪声参数变化的影响而降低的问题,提出一种自适应的变分贝叶斯容积卡尔曼滤波算法。在每一次更新步骤中,将系统状态与变化的观测噪声统计信息一起作为随机变量,并用变分贝叶... 针对应用于非线性系统模型的容积卡尔曼滤波工作性能会受观测噪声参数变化的影响而降低的问题,提出一种自适应的变分贝叶斯容积卡尔曼滤波算法。在每一次更新步骤中,将系统状态与变化的观测噪声统计信息一起作为随机变量,并用变分贝叶斯方法进行估计,在迭代逼近得到噪声方差后,再利用容积卡尔曼滤波对系统状态进行更新。仿真实验证明变分贝叶斯容积卡尔曼滤波算法在非线性系统的滤波问题中能够较好跟踪变化的观测噪声方差,相比容积卡尔曼滤波拥有较好的估计性能。 展开更多
关键词 变分贝叶斯 容积卡尔曼滤波 自适应 非线性系统
在线阅读 下载PDF
H ∞ 模糊自适应容积卡尔曼滤波 被引量:3
4
作者 刘胜 牛鸿敏 +1 位作者 张兰勇 郭晓杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期404-410,共7页
针对滤波过程中噪声统计特性不准确及非零均值噪声统计特性的情况,本文依据H∞卡尔曼滤波和容积卡尔曼滤波理论,设计了一种H∞模糊自适应容积卡尔曼滤波方法,有效地提高滤波的精度以及对系统未建模动态的鲁棒性。考虑到容积卡尔曼滤波... 针对滤波过程中噪声统计特性不准确及非零均值噪声统计特性的情况,本文依据H∞卡尔曼滤波和容积卡尔曼滤波理论,设计了一种H∞模糊自适应容积卡尔曼滤波方法,有效地提高滤波的精度以及对系统未建模动态的鲁棒性。考虑到容积卡尔曼滤波过程中需要已知噪声的先验统计特性的情况,提出了一种模糊自适应方法对系统噪声和测量噪声进行估计,从而提高滤波的稳定性和收敛的快速性。通过仿真实验表明:本文提出的H∞自适应容积卡尔曼滤波能够对噪声特性进行有效的估计,在系统存在参数摄动的情况下具有更高的鲁棒性。 展开更多
关键词 H∞滤波 容积卡尔曼滤波 非线性滤波 模糊规则 自适应算法 噪声统计估计 线性化 鲁棒性
在线阅读 下载PDF
应用自适应容积卡尔曼滤波改善组合导航性能 被引量:5
5
作者 史岳鹏 汤显峰 周溪召 《中国航海》 CSCD 北大核心 2013年第4期12-16,共5页
基于状态和测量模型扰动的有色噪声建模,研究应用自适应容积卡尔曼(Kalman)滤波来改善北斗导航系统/航位推算(BDNS/DR)组合导航系统的性能。利用有色噪声白化技术获得等价的白噪声组合导航系统;通过将一种自适应调节因子计算与平方根求... 基于状态和测量模型扰动的有色噪声建模,研究应用自适应容积卡尔曼(Kalman)滤波来改善北斗导航系统/航位推算(BDNS/DR)组合导航系统的性能。利用有色噪声白化技术获得等价的白噪声组合导航系统;通过将一种自适应调节因子计算与平方根求容积卡尔曼滤波结合获得一类自适应容积卡尔曼滤波(ASCKF),应用该算法改善组合导航系统的精度和稳定性。通过两个仿真实例验证了新算法的有效性。 展开更多
关键词 船舶、舰舶工程 舰船组合导航 北斗导航系统 航位推算 自适应 平方根求容积卡尔曼滤波 有色噪声
在线阅读 下载PDF
迭代自适应容积卡尔曼滤波算法 被引量:6
6
作者 巫春玲 李永萍 +1 位作者 谢美美 安诺静 《电子测量技术》 2019年第17期65-70,共6页
针对标准容积卡尔曼滤波(CKF)算法跟踪精度低、稳定性差的问题,提出了一种采用优化迭代测量更新过程方法,并将其引入到自适应的容积卡尔曼滤波算法中。该算法不仅保证了迭代算法的有效性,还在很大程度上提高了CKF算法的精度、增强算法... 针对标准容积卡尔曼滤波(CKF)算法跟踪精度低、稳定性差的问题,提出了一种采用优化迭代测量更新过程方法,并将其引入到自适应的容积卡尔曼滤波算法中。该算法不仅保证了迭代算法的有效性,还在很大程度上提高了CKF算法的精度、增强算法的稳定性,新算法还具有应对噪声统计特性变化的自适应能力。采用非线性高斯模型进行仿真实验与分析,实验中给出了扩展卡尔曼滤波(EKF)、无际卡尔曼滤波(UKF)、CKF、以及改良的迭代自适应容积卡尔曼滤波(IDCKF)等算法的目标跟踪滤波估计结果。并根据均方根误差、对目标跟踪位置与速度的均方根误差以及执行时间来证明新算法的有效性。 展开更多
关键词 自适应容积卡尔曼滤波 跟踪精度 稳定性 迭代测量更新过程方法
在线阅读 下载PDF
基于抗差自适应容积卡尔曼滤波的超紧耦合跟踪方法 被引量:22
7
作者 赵欣 王仕成 +2 位作者 廖守亿 马龙 刘志国 《自动化学报》 EI CSCD 北大核心 2014年第11期2530-2540,共11页
为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(Robust ... 为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(Robust adaptive cubature Kalman filter,RACKF)的超紧耦合跟踪算法.该算法采用稳健M估计调整容积卡尔曼滤波(Cubature Kalman filter,CKF)算法,对观测量中粗差的影响"程度"进行探测和处理,以减小观测量异常误差产生的影响,同时利用自适应调节因子对算法进行调节修正,以处理动态扰动误差引入的影响.实验结果表明:所提出的方法能有效地处理模型不准确所引入的误差,较好地实现全球定位系统(Global positioning system,GPS)卫星信号的高精度和稳定跟踪,其跟踪性能远优于基于单一回路的跟踪方法,同时优于基于无迹卡尔曼滤波(Unscented Kalman filter,UKF)和基于CKF的跟踪方法,提升了导航系统在高动态条件下的适应性能. 展开更多
关键词 超紧耦合导航 容积卡尔曼滤波 抗差自适应 高动态 信号跟踪
在线阅读 下载PDF
基于修正的自适应平方根容积卡尔曼滤波算法 被引量:9
8
作者 李春辉 马健 +3 位作者 杨永建 肖冰松 邓有为 盛涛 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期1824-1830,共7页
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root... 目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCKF)的基础上,提出一种基于修正的自适应SRCKF算法。该算法通过设置判定门限和修正准则,直接对状态预测值或滤波增益进行修正以平衡先验的预测值和后验反馈的量测值在滤波中所占的比重,进而减小状态估计误差。仿真结果表明,所提算法具有在目标状态突变和量测非线性时的良好滤波性能和数值稳定性,同时相比较需要计算渐消因子的STF算法,该算法在计算量和收敛速度上具有优势。 展开更多
关键词 目标建模 平方根容积卡尔曼滤波 修正算法 自适应滤波
在线阅读 下载PDF
低复杂度自适应容积卡尔曼滤波算法 被引量:11
9
作者 李春辉 马健 +1 位作者 杨永建 甘轶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页
确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适... 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 展开更多
关键词 容积卡尔曼滤波(CKF) 目标模型不确定性 强跟踪滤波 自适应修正 算法复杂度
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的主动配电网状态估计 被引量:7
10
作者 张叶贵 刘敏 +2 位作者 石倩 罗永平 孙江山 《电测与仪表》 北大核心 2020年第19期27-32,共6页
有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(Cubature Kalman Filter... 有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(Cubature Kalman Filter,CKF)算法引入到配电网进行动态状态估计,并与改进后的自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter,AUKF)算法进行对比,仿真分析表明CKF算法较AUKF算法具有较高的滤波精度以及较好的数值稳定性。该算法在系统负荷发生突变时滤波精度有所下降,为此进一步提出了自适应容积卡尔曼滤波(Adaptive Cubature Kalman Filter,ACKF)算法以改善状态估计性能。对三相不平衡电网进行算例仿真表明:ACKF算法相比较于CKF算法,滤波精度更高、鲁棒性更强。 展开更多
关键词 无迹卡尔曼滤波 容积卡尔曼滤波 AUKF ackf 主动配电网
在线阅读 下载PDF
基于自适应简化容积卡尔曼滤波的编队卫星相对导航 被引量:3
11
作者 穆建君 周川 +2 位作者 郭健 韩飞 孙玥 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期365-372,共8页
针对在星间相对导航中噪声的统计特性未知可能引起滤波估计精度下降甚至发散的问题,提出了一种自适应简化容积卡尔曼滤波(ASCKF)算法。将Sage-Husa自适应滤波与容积卡尔曼滤波(CKF)相结合,通过容积规则摆脱线性滤波的局限性。改进Sage-H... 针对在星间相对导航中噪声的统计特性未知可能引起滤波估计精度下降甚至发散的问题,提出了一种自适应简化容积卡尔曼滤波(ASCKF)算法。将Sage-Husa自适应滤波与容积卡尔曼滤波(CKF)相结合,通过容积规则摆脱线性滤波的局限性。改进Sage-Husa噪声估计器以避免噪声方差在线估计可能出现的非正定现象,从而保证了滤波器对噪声统计变化的自适应能力。结合编队卫星运动模型的特点,用常规卡尔曼滤波(KF)的时间更新代替相应的容积变换过程,在不影响滤波器性能的前提下减少了运算量。仿真结果表明:在测量噪声统计特性未知的情况下,与CKF相比,该文算法对相对状态的估计精度提高了近25%,同时滤波器的稳定性也得到了提高。 展开更多
关键词 自适应卡尔曼滤波 容积卡尔曼滤波 编队卫星 相对导航 容积规则 噪声估计器 时间更新 容积变换
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的动态谐波检测 被引量:7
12
作者 张明 陆东亮 +2 位作者 徐诗露 夏若平 何顺帆 《智慧电力》 北大核心 2022年第12期48-54,69,共8页
对电网中的谐波进行实时、准确的检测是有效治理谐波的前提。针对某些运行工况下电网中出现的动态谐波,提出了一种基于自适应容积卡尔曼滤波的动态谐波检测算法估计谐波信号的幅值和相角。首先针对传统卡尔曼滤波处理非线性关系上的局限... 对电网中的谐波进行实时、准确的检测是有效治理谐波的前提。针对某些运行工况下电网中出现的动态谐波,提出了一种基于自适应容积卡尔曼滤波的动态谐波检测算法估计谐波信号的幅值和相角。首先针对传统卡尔曼滤波处理非线性关系上的局限性,利用容积卡尔曼滤波不需要任何线性化关系的特性估计谐波的状态向量和误差偏差矩阵,然后引入噪声估值遗忘因子来实时更新系统的噪声矩阵方程。最后通过对比实验,验证了该算法在动态谐波检测上的优越性能,并将其应用于有源滤波器的谐波检测中。 展开更多
关键词 自适应容积卡尔曼滤波 遗忘因子 动态谐波检测 有源滤波
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的路面附着系数识别 被引量:1
13
作者 亓佳敖 冯静安 万文康 《石河子大学学报(自然科学版)》 CAS 北大核心 2023年第3期274-278,共5页
路面附着系数是车辆行驶稳定性的关键参数之一,精确识别车辆行驶时的路面附着系数是决定车辆安全性能优劣的重要前提。相较通过测量路面物理量的Cause-Based识别方法,基于动力学响应的Effect-Based识别方法受客观环境的影响较小,且经济... 路面附着系数是车辆行驶稳定性的关键参数之一,精确识别车辆行驶时的路面附着系数是决定车辆安全性能优劣的重要前提。相较通过测量路面物理量的Cause-Based识别方法,基于动力学响应的Effect-Based识别方法受客观环境的影响较小,且经济成本更为节约。本文结合车辆动力学响应与Dugoff轮胎模型公式,基于极大值后验估计(MAP)原理和观测信息对量测噪声的统计特性进行在线估计,并将其嵌入容积卡尔曼(CKF)中构建自适应容积卡尔曼(NACKF)路面附着系数估计器,提高算法的估计精度。CarSim-Simulink仿真试验结果表明,在高附着路面下NACKF算法的估计精度较之传统四维UKF和CKF分别提高了0.001 7和0.000 55,而在对接路面下估计精度较之传统UKF和CKF分别提高了0.172 3和0.039。 展开更多
关键词 电动汽车 路面附着系数 自适应容积卡尔曼滤波 极大值后验估计
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的双馈风力发电机动态状态估计 被引量:25
14
作者 王彤 高明阳 +1 位作者 黄世楼 王增平 《电网技术》 EI CSCD 北大核心 2021年第5期1837-1843,共7页
对风电机组进行状态监测,可以研究风电机组运行规律,对含风电电力系统的分析与控制具有重要意义。提出一种基于自适应容积卡尔曼滤波(adaptive cubature Kalman filter,ACKF)的双馈风力发电机(doubly fed induction generator,DFIG)动... 对风电机组进行状态监测,可以研究风电机组运行规律,对含风电电力系统的分析与控制具有重要意义。提出一种基于自适应容积卡尔曼滤波(adaptive cubature Kalman filter,ACKF)的双馈风力发电机(doubly fed induction generator,DFIG)动态状态估计方法。根据容积数值积分的原则,构建具有相同权值的容积点,经过DFIG非线性状态方程的传递,计算状态变量和误差协方差阵的预测值,利用量测量进行滤波修正,同时引入自适应技术,通过Sage-Husa估值器来实时估计过程噪声协方差,以建立DFIG动态状态估计模型。在含DFIG的改进四机两区系统进行算例分析,并与扩展卡尔曼滤波(extended Kalman filter,EKF)、容积卡尔曼滤波(cubature Kalman filter,CKF)进行性能比较,验证了所提状态估计算法的准确性和鲁棒性。 展开更多
关键词 双馈风力发电机 自适应容积卡尔曼滤波 动态状态估计
在线阅读 下载PDF
自适应容积卡尔曼滤波在空间机动目标跟踪中的应用 被引量:4
15
作者 黄璜 林浩申 何兵 《电光与控制》 北大核心 2015年第6期56-59,共4页
针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对... 针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对滤波发散情况进行检测和抑制,有效克服了空间目标发生机动时标准滤波器无法快速准确对其进行跟踪的问题,提高了空间目标定位跟踪的数值稳定性。仿真表明:与标准SCKF相比,自适应SCKF有效地提高了机动目标被动定位跟踪的鲁棒性,具有较高的滤波精度和稳定性,同时具有良好的实时性,能更好地完成对空间机动目标的跟踪任务。 展开更多
关键词 机动目标 目标跟踪 自适应 容积卡尔曼滤波 强跟踪滤波
在线阅读 下载PDF
基于模糊迭代均方根容积卡尔曼滤波的天基非合作目标跟踪 被引量:6
16
作者 岳聪 薄煜明 +2 位作者 吴盘龙 田梦楚 陈志敏 《中国惯性技术学报》 EI CSCD 北大核心 2017年第3期395-398,404,共5页
针对非合作航天器相对导航中测量噪声不确定的问题,提出了一种模糊迭代均方根容积卡尔曼滤波算法,实现对非合作目标相对状态的测量。该算法利用容积点均方根迭代策略和模糊推理系统实时调整改进容积卡尔曼滤波的量测噪声协方差阵权值,... 针对非合作航天器相对导航中测量噪声不确定的问题,提出了一种模糊迭代均方根容积卡尔曼滤波算法,实现对非合作目标相对状态的测量。该算法利用容积点均方根迭代策略和模糊推理系统实时调整改进容积卡尔曼滤波的量测噪声协方差阵权值,修正量测噪声协方差阵,使其接近真实噪声值,从而提高目标跟踪算法的自适应能力,提高了滤波精度。通过建立数学仿真模型,分别采用扩展卡尔曼滤波、容积卡尔曼滤波以及模糊迭代均方根容积卡尔曼滤波进行跟踪仿真,仿真结果表明,与标准容积卡尔曼滤波相比,该改进算法能够提高13.17%的跟踪精度。 展开更多
关键词 非合作目标 容积卡尔曼滤波 模糊推理系统 自适应滤波 目标跟踪
在线阅读 下载PDF
强跟踪-容积卡尔曼滤波在弹道式再入目标跟踪中的应用 被引量:10
17
作者 张龙 崔乃刚 +1 位作者 王小刚 白俞亮 《中国惯性技术学报》 EI CSCD 北大核心 2015年第2期211-218,共8页
对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面... 对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。 展开更多
关键词 弹道式再入目标跟踪 容积卡尔曼滤波 自适应渐消因子 非线性系统
在线阅读 下载PDF
基于雷达/红外测量的期望最大化容积卡尔曼滤波 被引量:4
18
作者 张连仲 王宝宝 张辉 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第5期624-630,共7页
为解决相应的目标跟踪问题,该文针对二维空间雷达/红外测量系统提出了一种期望最大化容积卡尔曼滤波(EMCKF)。在期望最大化框架下计算出量测噪声自适应因子,修正量测噪声协方差,以解决跟踪过程中时变量测噪声场景造成的量测模型失配的... 为解决相应的目标跟踪问题,该文针对二维空间雷达/红外测量系统提出了一种期望最大化容积卡尔曼滤波(EMCKF)。在期望最大化框架下计算出量测噪声自适应因子,修正量测噪声协方差,以解决跟踪过程中时变量测噪声场景造成的量测模型失配的问题。仿真结果表明,与容积卡尔曼滤波(CKF)相比,在时变量测噪声环境下,该文EMCKF可以得到更准确的结果,并且该算法对量测信息丢失具有更好的鲁棒性。 展开更多
关键词 雷达/红外测量系统 期望最大化 容积卡尔曼滤波 自适应因子 量测噪声
在线阅读 下载PDF
基于容积卡尔曼滤波的约束恒模波束形成算法
19
作者 沈锋 宋金阳 《系统工程与电子技术》 EI CSCD 北大核心 2016年第12期2700-2704,共5页
提出一种基于容积卡尔曼滤波的线性约束恒模波束形成算法。首先使用伪观测法将恒模代价函数和约束条件写成状态观测方程,之后利用容积卡尔曼滤波算法来求解以上非线性滤波问题。所提方法能够避免常规算法对模型的近似处理和特征值分散... 提出一种基于容积卡尔曼滤波的线性约束恒模波束形成算法。首先使用伪观测法将恒模代价函数和约束条件写成状态观测方程,之后利用容积卡尔曼滤波算法来求解以上非线性滤波问题。所提方法能够避免常规算法对模型的近似处理和特征值分散效应对波束形成器输出性能的影响,因此对干扰和噪声有更强的抑制能力。仿真结果表明,本算法相比随机梯度法和递归最小二乘法具有更快的收敛速度和更高的输出信干噪比,在非平稳环境下,能够迅速调整权值收敛到最优解。 展开更多
关键词 自适应波束形成 恒模准则 线性约束 伪观测法 容积卡尔曼滤波
在线阅读 下载PDF
变分贝叶斯自适应容积卡尔曼的SLAM算法 被引量:14
20
作者 张抒扬 董鹏 敬忠良 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第4期12-18,共7页
在观测噪声参数未知或变化时,传统的同步定位与建图(SLAM)算法性能会下降,为了让SLAM算法性能在上述条件下不受影响同时具有较高的精度,基于此提出了一种基于变分贝叶斯噪声自适应容积卡尔曼滤波的SLAM算法(VB-ACKF-SLAM).该算法采用逆W... 在观测噪声参数未知或变化时,传统的同步定位与建图(SLAM)算法性能会下降,为了让SLAM算法性能在上述条件下不受影响同时具有较高的精度,基于此提出了一种基于变分贝叶斯噪声自适应容积卡尔曼滤波的SLAM算法(VB-ACKF-SLAM).该算法采用逆Wishart分布对未知观测噪声参数建模,采用容积积分方法近似非线性变换的均值和方差,并利用变分贝叶斯滤波实现对移动机器人状态和未知观测噪声参数的联合后验概率的估计.该算法有效地解决了在观测噪声参数未知或变化时,传统滤波算法出现的滤波发散问题.仿真实验结果表明,在观测噪声参数未知或变化时,与基于容积卡尔曼滤波的SLAM算法(CFK-SLAM)、无迹卡尔曼滤波的SLAM算法(UKF-SLAM)、扩展卡尔曼滤波的SLAM算法(EKF-SLAM)相比,VB-ACKF-SLAM算法的定位准确率得到了较大的提高,证明了该算法的有效性. 展开更多
关键词 SLAM 容积卡尔曼滤波 移动机器人 噪声自适应 变分贝叶斯
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部