期刊文献+
共找到1,119篇文章
< 1 2 56 >
每页显示 20 50 100
迭代自适应容积卡尔曼滤波算法 被引量:6
1
作者 巫春玲 李永萍 +1 位作者 谢美美 安诺静 《电子测量技术》 2019年第17期65-70,共6页
针对标准容积卡尔曼滤波(CKF)算法跟踪精度低、稳定性差的问题,提出了一种采用优化迭代测量更新过程方法,并将其引入到自适应的容积卡尔曼滤波算法中。该算法不仅保证了迭代算法的有效性,还在很大程度上提高了CKF算法的精度、增强算法... 针对标准容积卡尔曼滤波(CKF)算法跟踪精度低、稳定性差的问题,提出了一种采用优化迭代测量更新过程方法,并将其引入到自适应的容积卡尔曼滤波算法中。该算法不仅保证了迭代算法的有效性,还在很大程度上提高了CKF算法的精度、增强算法的稳定性,新算法还具有应对噪声统计特性变化的自适应能力。采用非线性高斯模型进行仿真实验与分析,实验中给出了扩展卡尔曼滤波(EKF)、无际卡尔曼滤波(UKF)、CKF、以及改良的迭代自适应容积卡尔曼滤波(IDCKF)等算法的目标跟踪滤波估计结果。并根据均方根误差、对目标跟踪位置与速度的均方根误差以及执行时间来证明新算法的有效性。 展开更多
关键词 自适应容积卡尔曼滤波 跟踪精度 稳定性 迭代测量更新过程方法
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的动态谐波检测 被引量:7
2
作者 张明 陆东亮 +2 位作者 徐诗露 夏若平 何顺帆 《智慧电力》 北大核心 2022年第12期48-54,69,共8页
对电网中的谐波进行实时、准确的检测是有效治理谐波的前提。针对某些运行工况下电网中出现的动态谐波,提出了一种基于自适应容积卡尔曼滤波的动态谐波检测算法估计谐波信号的幅值和相角。首先针对传统卡尔曼滤波处理非线性关系上的局限... 对电网中的谐波进行实时、准确的检测是有效治理谐波的前提。针对某些运行工况下电网中出现的动态谐波,提出了一种基于自适应容积卡尔曼滤波的动态谐波检测算法估计谐波信号的幅值和相角。首先针对传统卡尔曼滤波处理非线性关系上的局限性,利用容积卡尔曼滤波不需要任何线性化关系的特性估计谐波的状态向量和误差偏差矩阵,然后引入噪声估值遗忘因子来实时更新系统的噪声矩阵方程。最后通过对比实验,验证了该算法在动态谐波检测上的优越性能,并将其应用于有源滤波器的谐波检测中。 展开更多
关键词 自适应容积卡尔曼滤波 遗忘因子 动态谐波检测 有源滤波
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的路面附着系数识别 被引量:1
3
作者 亓佳敖 冯静安 万文康 《石河子大学学报(自然科学版)》 CAS 北大核心 2023年第3期274-278,共5页
路面附着系数是车辆行驶稳定性的关键参数之一,精确识别车辆行驶时的路面附着系数是决定车辆安全性能优劣的重要前提。相较通过测量路面物理量的Cause-Based识别方法,基于动力学响应的Effect-Based识别方法受客观环境的影响较小,且经济... 路面附着系数是车辆行驶稳定性的关键参数之一,精确识别车辆行驶时的路面附着系数是决定车辆安全性能优劣的重要前提。相较通过测量路面物理量的Cause-Based识别方法,基于动力学响应的Effect-Based识别方法受客观环境的影响较小,且经济成本更为节约。本文结合车辆动力学响应与Dugoff轮胎模型公式,基于极大值后验估计(MAP)原理和观测信息对量测噪声的统计特性进行在线估计,并将其嵌入容积卡尔曼(CKF)中构建自适应容积卡尔曼(NACKF)路面附着系数估计器,提高算法的估计精度。CarSim-Simulink仿真试验结果表明,在高附着路面下NACKF算法的估计精度较之传统四维UKF和CKF分别提高了0.001 7和0.000 55,而在对接路面下估计精度较之传统UKF和CKF分别提高了0.172 3和0.039。 展开更多
关键词 电动汽车 路面附着系数 自适应容积卡尔曼滤波 极大值后验估计
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的双馈风力发电机动态状态估计 被引量:25
4
作者 王彤 高明阳 +1 位作者 黄世楼 王增平 《电网技术》 EI CSCD 北大核心 2021年第5期1837-1843,共7页
对风电机组进行状态监测,可以研究风电机组运行规律,对含风电电力系统的分析与控制具有重要意义。提出一种基于自适应容积卡尔曼滤波(adaptive cubature Kalman filter,ACKF)的双馈风力发电机(doubly fed induction generator,DFIG)动... 对风电机组进行状态监测,可以研究风电机组运行规律,对含风电电力系统的分析与控制具有重要意义。提出一种基于自适应容积卡尔曼滤波(adaptive cubature Kalman filter,ACKF)的双馈风力发电机(doubly fed induction generator,DFIG)动态状态估计方法。根据容积数值积分的原则,构建具有相同权值的容积点,经过DFIG非线性状态方程的传递,计算状态变量和误差协方差阵的预测值,利用量测量进行滤波修正,同时引入自适应技术,通过Sage-Husa估值器来实时估计过程噪声协方差,以建立DFIG动态状态估计模型。在含DFIG的改进四机两区系统进行算例分析,并与扩展卡尔曼滤波(extended Kalman filter,EKF)、容积卡尔曼滤波(cubature Kalman filter,CKF)进行性能比较,验证了所提状态估计算法的准确性和鲁棒性。 展开更多
关键词 双馈风力发电机 自适应容积卡尔曼滤波 动态状态估计
在线阅读 下载PDF
多传感器自适应容积卡尔曼滤波融合算法 被引量:5
5
作者 敖志刚 唐长春 +2 位作者 付成群 郭杰 叶春雷 《计算机应用研究》 CSCD 北大核心 2014年第5期1312-1315,1331,共5页
当容积卡尔曼滤波的系统模型不准确或测量出现异常时容易出现滤波发散。为了解决这一问题,提出了一种自适应容积卡尔曼滤波算法,构造了一组噪声统计估计器对噪声的统计特征进行在线实时估计,并在测量异常时采用修正函数对滤波过程进行修... 当容积卡尔曼滤波的系统模型不准确或测量出现异常时容易出现滤波发散。为了解决这一问题,提出了一种自适应容积卡尔曼滤波算法,构造了一组噪声统计估计器对噪声的统计特征进行在线实时估计,并在测量异常时采用修正函数对滤波过程进行修正,有效提高了滤波估计的精度和对滤波发散的抑制能力;在集中式滤波结构和联邦式滤波结构的基础上,设计了一种基于自适应容积卡尔曼滤波算法的多传感器系统混合式组合滤波结构,并给出了融合各传感器的局部滤波信息以得到全局滤波估计的计算方法。以对车辆的定位导航为应用背景进行了仿真实验,仿真结果证明了所提方法的有效性。 展开更多
关键词 容积卡尔曼滤波 自适应 噪声统计估计器 修正函数 组合滤波 数据融合
在线阅读 下载PDF
H ∞ 模糊自适应容积卡尔曼滤波 被引量:3
6
作者 刘胜 牛鸿敏 +1 位作者 张兰勇 郭晓杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期404-410,共7页
针对滤波过程中噪声统计特性不准确及非零均值噪声统计特性的情况,本文依据H∞卡尔曼滤波和容积卡尔曼滤波理论,设计了一种H∞模糊自适应容积卡尔曼滤波方法,有效地提高滤波的精度以及对系统未建模动态的鲁棒性。考虑到容积卡尔曼滤波... 针对滤波过程中噪声统计特性不准确及非零均值噪声统计特性的情况,本文依据H∞卡尔曼滤波和容积卡尔曼滤波理论,设计了一种H∞模糊自适应容积卡尔曼滤波方法,有效地提高滤波的精度以及对系统未建模动态的鲁棒性。考虑到容积卡尔曼滤波过程中需要已知噪声的先验统计特性的情况,提出了一种模糊自适应方法对系统噪声和测量噪声进行估计,从而提高滤波的稳定性和收敛的快速性。通过仿真实验表明:本文提出的H∞自适应容积卡尔曼滤波能够对噪声特性进行有效的估计,在系统存在参数摄动的情况下具有更高的鲁棒性。 展开更多
关键词 H∞滤波 容积卡尔曼滤波 非线性滤波 模糊规则 自适应算法 噪声统计估计 线性化 鲁棒性
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的矢量跟踪算法 被引量:7
7
作者 邹晓军 廉保旺 丹泽升 《西北工业大学学报》 EI CAS CSCD 北大核心 2018年第6期1108-1115,共8页
当前矢量跟踪环路中,鉴别器的输出受噪声影响存在较大误差,针对该问题,提出使用容积卡尔曼滤波器代替鉴别器的算法,对I/Q支路数据进行滤波处理,输出码相位误差和载波频率误差。该算法不仅可以规避鉴别器的非线性问题,而且可以降低噪声... 当前矢量跟踪环路中,鉴别器的输出受噪声影响存在较大误差,针对该问题,提出使用容积卡尔曼滤波器代替鉴别器的算法,对I/Q支路数据进行滤波处理,输出码相位误差和载波频率误差。该算法不仅可以规避鉴别器的非线性问题,而且可以降低噪声的影响。同时,使用容积卡尔曼滤波算法处理非线性的I/Q支路数据,有效地保证了数据处理的精度。针对噪声是未知或时变的特点,采用新息协方差对量测噪声的协方差矩阵进行实时估计,提高了算法应对环境噪声变化的鲁棒性。将新算法与基于鉴别器方式的矢量跟踪算法进行对比验证,实验数据表明,改进后算法输出的码相位误差和载波频率误差更小,用户位置和速度的解算精度也更高。 展开更多
关键词 GNSS 矢量跟踪 容积卡尔曼滤波 新息
在线阅读 下载PDF
应用自适应容积卡尔曼滤波改善组合导航性能 被引量:5
8
作者 史岳鹏 汤显峰 周溪召 《中国航海》 CSCD 北大核心 2013年第4期12-16,共5页
基于状态和测量模型扰动的有色噪声建模,研究应用自适应容积卡尔曼(Kalman)滤波来改善北斗导航系统/航位推算(BDNS/DR)组合导航系统的性能。利用有色噪声白化技术获得等价的白噪声组合导航系统;通过将一种自适应调节因子计算与平方根求... 基于状态和测量模型扰动的有色噪声建模,研究应用自适应容积卡尔曼(Kalman)滤波来改善北斗导航系统/航位推算(BDNS/DR)组合导航系统的性能。利用有色噪声白化技术获得等价的白噪声组合导航系统;通过将一种自适应调节因子计算与平方根求容积卡尔曼滤波结合获得一类自适应容积卡尔曼滤波(ASCKF),应用该算法改善组合导航系统的精度和稳定性。通过两个仿真实例验证了新算法的有效性。 展开更多
关键词 船舶、舰舶工程 舰船组合导航 北斗导航系统 航位推算 自适应 平方根求容积卡尔曼滤波 有色噪声
在线阅读 下载PDF
基于抗差自适应容积卡尔曼滤波的超紧耦合跟踪方法 被引量:22
9
作者 赵欣 王仕成 +2 位作者 廖守亿 马龙 刘志国 《自动化学报》 EI CSCD 北大核心 2014年第11期2530-2540,共11页
为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(Robust ... 为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(Robust adaptive cubature Kalman filter,RACKF)的超紧耦合跟踪算法.该算法采用稳健M估计调整容积卡尔曼滤波(Cubature Kalman filter,CKF)算法,对观测量中粗差的影响"程度"进行探测和处理,以减小观测量异常误差产生的影响,同时利用自适应调节因子对算法进行调节修正,以处理动态扰动误差引入的影响.实验结果表明:所提出的方法能有效地处理模型不准确所引入的误差,较好地实现全球定位系统(Global positioning system,GPS)卫星信号的高精度和稳定跟踪,其跟踪性能远优于基于单一回路的跟踪方法,同时优于基于无迹卡尔曼滤波(Unscented Kalman filter,UKF)和基于CKF的跟踪方法,提升了导航系统在高动态条件下的适应性能. 展开更多
关键词 超紧耦合导航 容积卡尔曼滤波 抗差自适应 高动态 信号跟踪
在线阅读 下载PDF
低复杂度自适应容积卡尔曼滤波算法 被引量:11
10
作者 李春辉 马健 +1 位作者 杨永建 甘轶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页
确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适... 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 展开更多
关键词 容积卡尔曼滤波(CKF) 目标模型不确定性 强跟踪滤波 自适应修正 算法复杂度
在线阅读 下载PDF
基于自适应容积卡尔曼滤波算法的电力系统动态谐波状态估计 被引量:22
11
作者 连鸿松 张少涵 张逸 《智慧电力》 北大核心 2020年第6期14-19,53,共7页
由于传统的谐波状态估计的参数辨识算法要求噪声的协方差矩阵固定不变,而实际工程中噪声的协方差矩阵是随时间变化的,工程中存在错误的量测数据,导致传统参数辨识算法估计的谐波电流参数的准确度较低。因此,提出自适应容积卡尔曼滤波算... 由于传统的谐波状态估计的参数辨识算法要求噪声的协方差矩阵固定不变,而实际工程中噪声的协方差矩阵是随时间变化的,工程中存在错误的量测数据,导致传统参数辨识算法估计的谐波电流参数的准确度较低。因此,提出自适应容积卡尔曼滤波算法来提高辨识谐波电流参数的准确度。首先,针对时变噪声干扰,采用基于渐消记忆指数加权法的噪声估值器算法生成时变噪声的协方差矩阵;其次,针对错误的量测数据,采用开窗估计算法修正错误的量测数据;然后,将修正的噪声协方差矩阵和量测数据代入容积卡尔曼滤波算法中,对谐波电流参数进行估计;最后,搭建IEEE 13节点系统仿真模型,验证了自适应容积卡尔曼滤波算法在时变噪声干扰及量测数据错误情况下仍可准确地估计谐波电流参数,确保了动态谐波状态估计的准确性。 展开更多
关键词 容积卡尔曼滤波 动态状态估计 谐波源定位 谐波污染。
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的主动配电网状态估计 被引量:7
12
作者 张叶贵 刘敏 +2 位作者 石倩 罗永平 孙江山 《电测与仪表》 北大核心 2020年第19期27-32,共6页
有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(Cubature Kalman Filter... 有效的状态估计算法是确保电力系统安全、稳定、经济运行的前提条件。针对传统无迹卡尔曼滤波(Unscented Kalman Filter,UKF)参数选取难、灵活性差、高阶系统滤波精度低等缺陷,将数值稳定性较好的容积卡尔曼滤波(Cubature Kalman Filter,CKF)算法引入到配电网进行动态状态估计,并与改进后的自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter,AUKF)算法进行对比,仿真分析表明CKF算法较AUKF算法具有较高的滤波精度以及较好的数值稳定性。该算法在系统负荷发生突变时滤波精度有所下降,为此进一步提出了自适应容积卡尔曼滤波(Adaptive Cubature Kalman Filter,ACKF)算法以改善状态估计性能。对三相不平衡电网进行算例仿真表明:ACKF算法相比较于CKF算法,滤波精度更高、鲁棒性更强。 展开更多
关键词 无迹卡尔曼滤波 容积卡尔曼滤波 AUKF ACKF 主动配电网
在线阅读 下载PDF
自适应容积卡尔曼滤波在空间机动目标跟踪中的应用 被引量:4
13
作者 黄璜 林浩申 何兵 《电光与控制》 北大核心 2015年第6期56-59,共4页
针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对... 针对目标在线机动时,平方根容积卡尔曼滤波不具有良好的鲁棒性,不能够快速发生响应的问题,提出一种自适应容积卡尔曼滤波(CKF)算法,算法利用CKF的平方根形式进行迭代,即SCKF。将强跟踪滤波算法引入平方根容积卡尔曼滤波,引入渐消因子对滤波发散情况进行检测和抑制,有效克服了空间目标发生机动时标准滤波器无法快速准确对其进行跟踪的问题,提高了空间目标定位跟踪的数值稳定性。仿真表明:与标准SCKF相比,自适应SCKF有效地提高了机动目标被动定位跟踪的鲁棒性,具有较高的滤波精度和稳定性,同时具有良好的实时性,能更好地完成对空间机动目标的跟踪任务。 展开更多
关键词 机动目标 目标跟踪 自适应 容积卡尔曼滤波 强跟踪滤波
在线阅读 下载PDF
抗差自适应容积卡尔曼滤波在UWB室内定位中的应用 被引量:9
14
作者 高嵩 宋佳鹏 +1 位作者 房穹 张熙为 《导航定位学报》 CSCD 2023年第1期142-147,共6页
针对超宽带(UWB)测距异常值、传统滤波方法中动力学模型不精准、状态向量误差协方差阵非正定等问题,提出一种基于奇异值分解的抗差自适应容积卡尔曼滤波算法,并将其应用于UWB室内定位中:以标准容积卡尔曼滤波(CKF)算法为基础,利用残差... 针对超宽带(UWB)测距异常值、传统滤波方法中动力学模型不精准、状态向量误差协方差阵非正定等问题,提出一种基于奇异值分解的抗差自适应容积卡尔曼滤波算法,并将其应用于UWB室内定位中:以标准容积卡尔曼滤波(CKF)算法为基础,利用残差向量构造抗差因子消除观测异常值对定位解的影响;利用自适应因子对整体模型误差进行实时调整和修正以提高滤波精度;同时用奇异值分解代替乔莱斯基(Cholesky)分解以进一步提高滤波的稳定性。实验结果表明,所提算法相比传统的扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、CKF算法,能够进一步提高UWB系统的定位精度和抗干扰能力,定位最大误差由1.5 m降至0.3 m,均方根误差小于0.05 m。 展开更多
关键词 超宽带(UWB)定位 奇异值分解 容积卡尔曼滤波 测距异常值 系统噪声
在线阅读 下载PDF
基于自适应容积卡尔曼滤波的车辆状态参数估计与仿真分析 被引量:2
15
作者 邹彦冉 张竹林 +1 位作者 阮帅 蒋德飞 《农业装备与车辆工程》 2023年第7期59-64,共6页
针对车辆状态参数估计时量测噪音对估计精度的影响,为了提高车辆状态参数估计的可靠性,设计了一种自适应容积卡尔曼滤波的车辆状态估计算法。建立非线性三自由度动力学车辆模型,以车辆方向盘转角与车辆纵向加速度为输入参数,以车辆侧向... 针对车辆状态参数估计时量测噪音对估计精度的影响,为了提高车辆状态参数估计的可靠性,设计了一种自适应容积卡尔曼滤波的车辆状态估计算法。建立非线性三自由度动力学车辆模型,以车辆方向盘转角与车辆纵向加速度为输入参数,以车辆侧向加速度为观测参数,实现对车辆横摆角速度、质心侧偏角、纵向速度的估计,最后采用CarSim/Simulink联合仿真平台搭建不同工况进行验证。仿真证明,自适应容积卡尔曼滤波算法(ACKF)对车辆状态估计比拓展卡尔曼滤波算法(EKF)有更好的收敛特性和估计精度。 展开更多
关键词 容积卡尔曼滤波 车辆状态参数估计 噪音估计器 汽车动力学
在线阅读 下载PDF
偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法 被引量:1
16
作者 邓洪高 余润华 +2 位作者 纪元法 吴孙勇 孙少帅 《电子与信息学报》 北大核心 2025年第1期156-166,共11页
针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏... 针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏差,将相邻时刻目标状态扩维以满足实时滤波需求,利用逆Wishart分布建模未知量测噪声协方差矩阵,从而建立目标状态、指示变量、噪声协方差矩阵的联合分布,并通过变分贝叶斯推断来求解各个参数的近似后验。为减小滤波负担,对扩维后的状态向量进行边缘化处理,结合容积卡尔曼滤波方法实现边缘化容积卡尔曼滤波跟踪。仿真实验结果表明,所提方法能够同时处理突变测量偏差和未知时变量测噪声,从而对目标进行有效跟踪。 展开更多
关键词 突变测量偏差 Beta-Bernoulli分布 逆Wishart分布 变分贝叶斯推断 边缘化容积卡尔曼滤波
在线阅读 下载PDF
基于改进自适应卡尔曼滤波算法的温室UWB定位技术 被引量:1
17
作者 张兆国 朱时亮 +3 位作者 王法安 解开婷 张炅昊 李漫漫 《农业机械学报》 北大核心 2025年第3期494-502,522,共10页
针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测... 针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测机制,以识别滤波过程中的发散现象;进而,通过实时更新量测噪声协方差矩阵,抑制滤波发散,在噪声强波动情况下增强算法适应性;同时,开展3种不同环境噪声下仿真定位试验,对比分析UWB、IAKF、自适应卡尔曼滤波(Adaptive Kalman filter,AKF)及卡尔曼滤波(Kalman filter,KF)算法性能。仿真结果表明,IAKF算法展现出更强的适应性及鲁棒性。以自主开发农用履带车辆为定位载体,于农业温室环境中开展UWB定位试验。试验结果表明,温室环境中,履带车辆在视距(Line of sight,LOS)和非视距(Non line of sight,NLOS)场景下,较AKF和KF算法,IAKF算法定位精度分别提高22.2%、13.0%和20.0%、15.4%。 展开更多
关键词 温室 精确定位 超宽带 改进自适应卡尔曼滤波
在线阅读 下载PDF
电动汽车状态改进自适应卡尔曼滤波估计测试
18
作者 潘明存 乔丽霞 +1 位作者 何勋 董峰 《机械设计与制造》 北大核心 2025年第5期59-63,共5页
为了提高电动汽车状态估计精度,设计了一种新型结构的改进自适应卡尔曼滤波算法(Improved Adaptive Kalman Filter,IAKF)。对滑动窗口长度进行自主调节,同时利用该算法来实现卡尔曼滤波增益以及估计噪声协方差自适应分析,相对传统形式... 为了提高电动汽车状态估计精度,设计了一种新型结构的改进自适应卡尔曼滤波算法(Improved Adaptive Kalman Filter,IAKF)。对滑动窗口长度进行自主调节,同时利用该算法来实现卡尔曼滤波增益以及估计噪声协方差自适应分析,相对传统形式的协方差直接更新方式与噪声协方差自适应算法可以达到更准确的结果。研究结果表明:相对扩展卡尔曼滤波方法(Extended Kalman Filter,EKF)与Sage-Husa自适应扩展卡尔曼滤波(Sage-Husa Adaptive Kalman Filter,SHAKF),IAKF可以达到更高估计精度。当噪声与实际统计特征存在差异时,相对最初误差提高近30倍,精度明显下降。随着最小滑动窗口长度减小后,可以使状态估计过程获得更快动态响应速率。实验测试证明这里估计算法能够达到高估计精度以及良好的鲁棒能力。算法负荷测试结果显示都在1ms内,能够满足10ms内的步长要求,达到算法实时性的效率标准。 展开更多
关键词 电动汽车 状态估计 卡尔曼滤波 分布式驱动 自适应控制
在线阅读 下载PDF
改进容积卡尔曼滤波的多目标多模态跟踪算法
19
作者 刘德儿 程健康 刘峻廷 《传感技术学报》 北大核心 2025年第7期1253-1261,共9页
高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检... 高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检测到的目标相关联并使用卡尔曼滤波进行更新,其次将未关联的轨迹与仅出现在点云域中的目标相关联,其中第一步未关联的目标定义为新轨迹,而第二步未关联的目标删除,所提方法可以极大地减少智能车辆行驶过程中误检目标的出现,从而显著提升行驶的安全性。同时,针对一些采用非线性卡尔曼滤波器的方法中在转弯过程中目标框偏移的问题,提出了一种改进的容积卡尔曼滤波器。该方法利用IMU数据来判断车辆的行驶状态,并自适应地调整估计误差矩阵,有效消除了车辆转弯对目标行驶状态估计的负面影响。在Kitti多目标跟踪数据集上进行测试的结果显示,所提算法有很高的优越性,HOTA(High Object Track Accuracy)达到78.00,MOTA(Multi-Object Track Accuracy)达到88.85,FPS达到200,在保持高精度的同时能很好满足实时性要求。 展开更多
关键词 自动驾驶 多目标跟踪 改进容积卡尔曼滤波 非线性运动模型 传感器融合
在线阅读 下载PDF
基于改进自适应卡尔曼滤波的遮挡场景人体关节重定位方法研究
20
作者 李国友 卢凯 +2 位作者 李宏 张友浪 柴子华 《计算机应用与软件》 北大核心 2025年第5期155-163,共9页
针对Kinect V2受到自身误差和关节遮挡的影响导致采集的人体关节数据出现抖动与缺失的问题,提出将改进的自适应卡尔曼滤波算法与人体运动学特征融合的方法。在自适应卡尔曼滤波算法中引入滤波收敛性判据与骨骼失真系数以减少算法计算量... 针对Kinect V2受到自身误差和关节遮挡的影响导致采集的人体关节数据出现抖动与缺失的问题,提出将改进的自适应卡尔曼滤波算法与人体运动学特征融合的方法。在自适应卡尔曼滤波算法中引入滤波收敛性判据与骨骼失真系数以减少算法计算量并加快自适应参数收敛速度,结合人体骨骼长度不变性与运动连续性获取被遮挡关节的先验坐标测量值,再代入改进的自适应卡尔曼滤波算法以获得被遮挡关节的重定位坐标。实验结果表明,该方法能够满足用户实时性需求,并有效提高人体关节数据准确性。 展开更多
关键词 Kinect V2 骨骼数据 自适应卡尔曼滤波 人体运动学
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部