期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于自适应学习策略的改进鸽群优化算法 被引量:13
1
作者 胡耀龙 冯强 +1 位作者 海星朔 任羿 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第12期2348-2356,共9页
鸽群优化(PIO)算法已广泛用于无人机编队和控制参数优化等领域,但标准PIO算法容易陷入局部最优。提出了一种基于自适应学习策略的改进鸽群优化(ALPIO)算法。该算法引入了基于容差的搜索方向调整策略、基于自学习的候选者生成策略以及基... 鸽群优化(PIO)算法已广泛用于无人机编队和控制参数优化等领域,但标准PIO算法容易陷入局部最优。提出了一种基于自适应学习策略的改进鸽群优化(ALPIO)算法。该算法引入了基于容差的搜索方向调整策略、基于自学习的候选者生成策略以及基于竞争学习的预测策略,通过增强种群的多样性,可提高算法全局最优概率,其已在8个基准函数上进行测试。仿真试验结果表明:所提算法在多峰函数优化问题中的收敛精度和收敛速度有了显著提升,并且能够更有效避免陷入局部最优解。 展开更多
关键词 鸽群优化(PIO)算法 局部最优 自适应学习策略 种群多样性 全局最优
在线阅读 下载PDF
基于新型细菌觅食优化算法的飞机动态泊位问题 被引量:1
2
作者 牛奔 张楚容 +1 位作者 余俊 周天薇 《系统工程学报》 CSCD 北大核心 2024年第3期413-427,共15页
随着航空运输业的发展,传统手动设计泊位方案已难以满足日益增长的外包维修需求.在外包模式下,如何快速给出高效的动态泊位方案关系到维修任务订单的准点交付,是飞机维修服务公司亟待解决的重要问题.针对飞机泊位进出顺序及碰撞检测特点... 随着航空运输业的发展,传统手动设计泊位方案已难以满足日益增长的外包维修需求.在外包模式下,如何快速给出高效的动态泊位方案关系到维修任务订单的准点交付,是飞机维修服务公司亟待解决的重要问题.针对飞机泊位进出顺序及碰撞检测特点,构建带时间窗的飞机维修泊位模型.设计自适应趋化学习及交叉协作策略,提出新型细菌觅食优化算法,并设计一系列约束处理机制.研究结果表明,提出的基于矩形碰撞检测方法可有效预防并判断飞机间碰撞阻塞情况.新型细菌觅食优化算法在解决飞机动态泊位问题上展现出搜索精度高、稳定性强等特点.所得高效智能化泊位调度方案有助于在保证维修安全的情况下提升飞机维修服务提供商的维修服务效率,改进维修资源利用率与维修系统的柔性,为企业实现高质量发展打下良好基础. 展开更多
关键词 飞机动态泊位 维修时间窗 细菌觅食优化算法 自适应趋化学习策略 交叉协作策略
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
3
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
基于重启随机游走的图自编码器 被引量:2
4
作者 李琳 梁永全 刘广明 《计算机应用研究》 CSCD 北大核心 2021年第10期3009-3013,共5页
针对现有的图自编码器无法捕捉图中节点之间的上下文信息的问题,提出基于重启随机游走的图自编码器。首先,构造两层图卷积网络编码图的拓扑结构和特征,同时进行重启随机游走捕捉节点之间的上下文信息;其次,为了聚合重启随机游走和图卷... 针对现有的图自编码器无法捕捉图中节点之间的上下文信息的问题,提出基于重启随机游走的图自编码器。首先,构造两层图卷积网络编码图的拓扑结构和特征,同时进行重启随机游走捕捉节点之间的上下文信息;其次,为了聚合重启随机游走和图卷积网络获得的表示,设计自适应学习策略,根据两种表示的重要性自适应地分配权重。为了证明该方法的有效性,将图最终的表示应用于节点聚类和链路预测任务。实验结果表明,与基线方法相比,提出的方法实现了更先进的性能。 展开更多
关键词 图嵌入 网络表示学习 图自编码器 图卷积网络 重启随机游走 自适应学习策略
在线阅读 下载PDF
基于改进DPSO非退出故障下多无人机任务规划 被引量:2
5
作者 邵士凯 李厚振 赵渊洁 《科学技术与工程》 北大核心 2023年第32期14030-14040,共11页
针对非退出故障下多无人机(unmanned aerial vehicle,UAV)协同任务规划问题,提出了一种基于混合策略改进的离散粒子群算法(mixed strategy improved discrete particle swarm optimization,MSDPSO)。该方法首先采用Sobol序列进行种群初... 针对非退出故障下多无人机(unmanned aerial vehicle,UAV)协同任务规划问题,提出了一种基于混合策略改进的离散粒子群算法(mixed strategy improved discrete particle swarm optimization,MSDPSO)。该方法首先采用Sobol序列进行种群初始化,提高解空间的覆盖率;然后,提出非线性时变策略,加快算法的收敛速度;并引入柯西算子,增强离散粒子群算法的搜索空间;同时,还提出自适应交叉学习策略,丰富种群多样性,进而提升算法的全局寻优能力。综合改进的离散粒子群算法不仅加快了收敛速度,并且解的最优性也得到了提高。此外,运用三次样条插值算法进行无人机航迹规划,最后,将改进算法在三维空间中进行无人机故障前后的对比仿真实验,结果表明:所设计的算法具有显著的寻优有效性,为部分无人机发生轻微故障后,多机协同执行任务规划的问题提供了理论依据。 展开更多
关键词 多机协同 混合策略改进的离散粒子群算法(MSDPSO) Sobol序列初始化 自适应交叉学习策略 三次样条插值算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部