期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
双学习率自适应的Q路由算法 被引量:6
1
作者 沙鑫磊 白光伟 +2 位作者 张杰 赵文天 沈航 《小型微型计算机系统》 CSCD 北大核心 2019年第8期1672-1677,共6页
随着网络不断演进,网络流量呈爆炸式增长,路由方法成为了网络流量控制中的关键难题.这是因为传统的路由策略不具备学习能力,不能从过去的转发经验中学习到拥塞、链路中断等网络异常,也就不能根据网络状态调整路由策略.本文提出了一种双... 随着网络不断演进,网络流量呈爆炸式增长,路由方法成为了网络流量控制中的关键难题.这是因为传统的路由策略不具备学习能力,不能从过去的转发经验中学习到拥塞、链路中断等网络异常,也就不能根据网络状态调整路由策略.本文提出了一种双学习率自适应的Q路由算法DALRQ-routing.在轮询阶段,DALRQ-routing根据网络延迟调整echo学习率,减少轮询操作造成的延迟抖动.在转发阶段,算法根据TD-error调整transfer学习率,提高算法收敛速度.通过这种双学习率自适应的机制来降低延迟抖动,加速算法收敛.本文将提出的算法与Full Echo Q-routing和AQFE算法进行了比较.实验结果表明,在动态变化的网络负载下,本文所提出的算法在保持高收敛速度和低初始化峰值延迟的基础上明显减少了延迟抖动,提高了网络的稳定性. 展开更多
关键词 路由算法 自适应路由 Q路由 自适应学习 延迟抖动
在线阅读 下载PDF
基于动量自适应学习率PSO-BP神经网络的钻速预测模型研究 被引量:15
2
作者 刘伟吉 冯嘉豪 +1 位作者 祝效华 李枝林 《科学技术与工程》 北大核心 2023年第24期10264-10272,共9页
机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为... 机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为了实现对钻速的高精度预测,对现有BP (back propagation)神经网络进行优化,提出了一种新的神经网络模型,即动态自适应学习率的粒子群优化BP神经网络,利用录井数据建立目标井预测模型来对钻速进行预测。在训练过程中对BP神经网络进行优化,利用启发式算法,即附加动量法和自适应学习率,将两种方法结合起来形成动态自适应学习率的BP改进算法,提高了BP神经网络的训练速度和拟合精度,获得了更好的泛化性能。将BP神经网络与遗传优化算法(genetic algorithm,GA)和粒子群优化算法(particle swarm optimization,PSO)结合,得到优化后的动态自适应学习率BP神经网络。研究利用XX8-1-2井的录井数据进行实验,对比BP神经网络、PSO-BP神经网络、GA-BP神经网络3种不同的改进后神经网络的预测结果。实验结果表明:优化后的PSO-BP神经网络的预测性能最好,具有更高的效率和可靠性,能够有效的利用工程数据,在有一定数据采集量的区域提供较为准确的ROP预测。 展开更多
关键词 钻速(ROP)预测 BP神经网络 附加动量法 自适应学习 遗传算法(GA) 粒子群算法(PSO)
在线阅读 下载PDF
BP神经网络中自适应学习率的研究 被引量:12
3
作者 王文成 《计算机科学》 CSCD 北大核心 1995年第4期48-50,共3页
<正>l引言~[1] 图1是一个典型的三层神经网络BP算铸示意图.Z是输入向量,Y是隐层输出向量0是网络输出向量,V及W分别为层间权向量。逆传播(Backprop-
关键词 神经网络 自适应学习 BP算法
在线阅读 下载PDF
兼顾正确率和差异性的自适应集成算法及应用 被引量:1
4
作者 罗建宏 陈德钊 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第3期557-562,共6页
针对如何从集成分类器中合理地筛选个体以提高集成学习的效果这一难题,提出了新的集成算法.该算法基于知识粒原理设计一种兼顾正确率和差异性的筛选指标,以便从训练的一批分类器中快速地选择个体组建成库;以自适应方式,针对每一类别生... 针对如何从集成分类器中合理地筛选个体以提高集成学习的效果这一难题,提出了新的集成算法.该算法基于知识粒原理设计一种兼顾正确率和差异性的筛选指标,以便从训练的一批分类器中快速地选择个体组建成库;以自适应方式,针对每一类别生成特定的集成分类器,这些集成分类器间存在包容性,由此构建的集成分类器组将占用较少的计算资源,并将以自适应方式进行分类决策.对多种模式分类问题的试验结果表明:与其他集成方法相比,该集成算法更为高效,稳定性更好,具有较强的泛化性能. 展开更多
关键词 集成分类器 集成学习 知识粒 正确 差异性 自适应集成算法
在线阅读 下载PDF
一种自适应惯性权重的混合蛙跳算法 被引量:8
5
作者 刘悦婷 赵小强 《计算机工程》 CAS CSCD 2012年第12期132-135,共4页
针对混合蛙跳算法(SFLA)易陷入局部最优、收敛速度慢的问题,提出一种改进的混合蛙跳算法。该算法用相对基学习法初始化青蛙群体,从而提高初始解的质量。通过引入自适应惯性权重修正青蛙的更新策略,可以平衡算法的全局搜索和局部搜索。对... 针对混合蛙跳算法(SFLA)易陷入局部最优、收敛速度慢的问题,提出一种改进的混合蛙跳算法。该算法用相对基学习法初始化青蛙群体,从而提高初始解的质量。通过引入自适应惯性权重修正青蛙的更新策略,可以平衡算法的全局搜索和局部搜索。对6个经典函数的仿真测试结果表明,该算法与SFLA和ISFLA1算法相比寻优能力强、迭代次数少、解的精度高,更适合高维复杂函数的优化。 展开更多
关键词 混合蛙跳算法 相对基学习 惯性权重 自适应 更新策略 全局最优
在线阅读 下载PDF
控制Logistic系统的自适应Chebyshev多项式神经网络算法 被引量:4
6
作者 李目 谭文 +1 位作者 何怡刚 周少武 《电子测量与仪器学报》 CSCD 2010年第8期730-736,共7页
提出了一种基于自适应Chebyshev多项式神经网络(ACNN)的Logistic混沌系统控制算法。该算法采用Chebyshev正交多项式作为神经网络的激励函数,构建Logistic混沌系统的预测与控制模型。为了保证算法的稳定性,提出和证明了收敛定理,并利用... 提出了一种基于自适应Chebyshev多项式神经网络(ACNN)的Logistic混沌系统控制算法。该算法采用Chebyshev正交多项式作为神经网络的激励函数,构建Logistic混沌系统的预测与控制模型。为了保证算法的稳定性,提出和证明了收敛定理,并利用自适应学习率算法提高神经网络的学习效率和收敛速度。通过采用自适应Chebyshev神经网络直接学习Logistic混沌系统的动态特性,并对系统实施目标函数控制。实验仿真结果表明,该算法在Logistic混沌系统有外部干扰的情况下仍能对其进行有效控制,网络学习时间为0.178 s,训练步长为10,均方误差达到1.15×10-4,与其他常见算法相比具有计算量小、速度快、精度高和网络结构简单等优点。 展开更多
关键词 CHEBYSHEV神经网络 自适应学习算法 收敛定理 Logistic系统 混沌控制
在线阅读 下载PDF
基于频率下降率的结构损伤自适应神经网络识别 被引量:8
7
作者 罗跃纲 张松鹤 闻邦椿 《中国安全科学学报》 CAS CSCD 2005年第5期13-16,共4页
笔者探讨了动量系数和学习率自适应调整的神经网络算法及结构裂纹损伤识别特征参数的选取,提出以反映结构损伤位置和程度的频率下降率作为结构裂纹损伤识别的特征参数,利用有限元网格细化法对结构裂纹损伤进行数值模拟,获取训练样本数据... 笔者探讨了动量系数和学习率自适应调整的神经网络算法及结构裂纹损伤识别特征参数的选取,提出以反映结构损伤位置和程度的频率下降率作为结构裂纹损伤识别的特征参数,利用有限元网格细化法对结构裂纹损伤进行数值模拟,获取训练样本数据,通过自适应神经网络对结构裂纹损伤问题进行识别研究。从结构裂纹损伤识别实例的结果中可以看出,采用频率下降率和自适应神经网络技术对结构裂纹进行损伤识别分析具有较高的精度和可靠性。 展开更多
关键词 下降 网络识别 结构损伤 自适应神经网络 结构裂纹 损伤识别 神经网络算法 神经网络技术 特征参数 裂纹损伤 自适应调整 损伤位置 数值模拟 网格细化 样本数据 识别分析 学习 系数和 有限元 可靠性
在线阅读 下载PDF
混合递阶遗传算法的自适应小波神经网络优化设计 被引量:1
8
作者 刘杰 端木京顺 +1 位作者 甘旭升 王青 《火力与指挥控制》 CSCD 北大核心 2008年第11期29-32,35,共5页
在研究自适应小波神经网络学习算法的基础上,提出了一种混合递阶遗传算法,与标准遗传算法相比,该算法不仅可以同时确定网络参数(连接权、尺度参数和平移参数),而且解决了网络拓扑结构的优化训练问题。仿真结果表明,该算法可以准确地搜... 在研究自适应小波神经网络学习算法的基础上,提出了一种混合递阶遗传算法,与标准遗传算法相比,该算法不仅可以同时确定网络参数(连接权、尺度参数和平移参数),而且解决了网络拓扑结构的优化训练问题。仿真结果表明,该算法可以准确地搜索到自适应小波网络的网络参数和最优结构,并能大幅度提高学习效率,是切实可行的。 展开更多
关键词 适应度函数 学习 递阶遗传算法 小波神经网络
在线阅读 下载PDF
带有微分项改进的自适应梯度下降优化算法 被引量:5
9
作者 葛泉波 张建朝 +1 位作者 杨秦敏 李宏 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第4期623-632,共10页
梯度下降算法作为卷积神经网络训练常用优化算法,其性能的优劣直接影响网络训练收敛性.本文主要分析了目前梯度优化算法中存在超调而影响收敛性问题以及学习率自适应性问题,提出了一种带微分项的自适应梯度优化算法,旨在改善网络优化过... 梯度下降算法作为卷积神经网络训练常用优化算法,其性能的优劣直接影响网络训练收敛性.本文主要分析了目前梯度优化算法中存在超调而影响收敛性问题以及学习率自适应性问题,提出了一种带微分项的自适应梯度优化算法,旨在改善网络优化过程收敛性的同时提高收敛速率.首先,针对优化过程存在较大超调量的问题,通过对迭代算法的重整合以及结合传统控制学原理引入微分项等方式来克服权重更新滞后于实际梯度改变的问题;然后,引入自适应机制来应对因学习率的不适应性导致的收敛率差和收敛速率慢等问题;紧接着,基于柯西-施瓦茨和杨氏不等式等证明了新算法的最差性能上界(悔界)为■(√T).最后,通过在包括MNIST数据集以及CIFAR-10基准数据集上的仿真实验来验证新算法的有效性,结果表明新算法引入的微分项和自适应机制的联合模式能够有效地改善梯度下降算算法的收敛性能,从而实现算法性能的明显改善. 展开更多
关键词 卷积神经网络 梯度下降算法 微分项 权重更新 自适应学习 悔界
在线阅读 下载PDF
基于差分进化算法的瞬变电磁一维反演 被引量:3
10
作者 王少杰 周磊 +3 位作者 谢兴兵 毛玉蓉 程见中 严良俊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第2期343-351,共9页
实际采集的瞬变电磁数据包含电磁感应和激发极化效应,如何准确提取电阻率和极化率信息是电性源瞬变电磁数据处理的关键。首先,基于Cole⁃Cole复电阻率模型实现有限长电性源瞬变电磁法一维正演,在此基础上提出一种基于差分进化算法的电性... 实际采集的瞬变电磁数据包含电磁感应和激发极化效应,如何准确提取电阻率和极化率信息是电性源瞬变电磁数据处理的关键。首先,基于Cole⁃Cole复电阻率模型实现有限长电性源瞬变电磁法一维正演,在此基础上提出一种基于差分进化算法的电性源瞬变电磁一维反演方法。然后,在传统差分进化算法的基础上引入反向学习策略及控制参数自适应调节,加快反演的收敛速度,同时在目标函数中引入约束条件,构成最小构造反演,降低反演的多解性。最后,基于典型的三层地电模型和复杂多层模型进行理论模型测试,反演结果可有效恢复模型的电阻率和极化率。利用实测资料进行反演,反演得到的电阻率与OCCAM反演电阻率基本一致。在此电阻率约束的基础上,进一步反演得到极化率信息。反演结果准确地提取了实测数据中的电阻率信息,得到了地下介质的极化率分布,证明了算法的准确性和适用性。 展开更多
关键词 一维反演 自适应差分进化算法 反向学习策略 电阻 极化 瞬变电磁
在线阅读 下载PDF
基于IMODA自适应深度信念网络的复杂模拟电路故障诊断方法 被引量:4
11
作者 巩彬 安爱民 +1 位作者 石耀科 杜先君 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期327-344,共18页
针对传统DBN在无监督训练过程中预训练耗时久、诊断精度差等问题,提出了一种基于改进多目标蜻蜓优化自适应深度信念网络(IMODA-ADBN)的模拟电路故障诊断方法。首先,根据参数更新方向的异同提出了自适应学习率,提高网络收敛速度;其次,传... 针对传统DBN在无监督训练过程中预训练耗时久、诊断精度差等问题,提出了一种基于改进多目标蜻蜓优化自适应深度信念网络(IMODA-ADBN)的模拟电路故障诊断方法。首先,根据参数更新方向的异同提出了自适应学习率,提高网络收敛速度;其次,传统DBN在有监督调优过程利用BP算法,然而BP算法存在易陷入局部最优的问题,为了改善该问题,利用改进的MODA算法取代BP算法提高网络分类精度。在IMODA算法中,添加Logistic混沌印射和基于对立跳跃以获得帕累托最优解,增加算法的多样性,提高算法的性能。在7个多目标数学基准问题上测试该算法,并与3种元启发式优化算法(MODA、MOPSO和NSGA-II)进行比较,证明了IMODA-ADBN网络模型具有稳定性。最后将IMODAADBN运用到二级四运放双二阶低通滤波器的诊断实验中,实验结果表明该方法在收敛速度快的基础上保证了分类精度,诊断率更高,能够实现高难故障的分类与定位。 展开更多
关键词 模拟电路 MODA算法 自适应学习 深度信念网络 故障诊断
在线阅读 下载PDF
基于卷积神经网络的随机梯度下降算法 被引量:75
12
作者 王功鹏 段萌 牛常勇 《计算机工程与设计》 北大核心 2018年第2期441-445,462,共6页
为解决卷积神经网络(CNN)中随机梯度下降算法(SGD)的学习率设置不当对SGD算法的影响,提出一种学习率自适应SGD的更新算法,随着迭代的进行该算法使学习率呈现周期性的改变。针对CNN中Relu激活函数将CNN中的阈值为负的神经元丢弃的缺陷,... 为解决卷积神经网络(CNN)中随机梯度下降算法(SGD)的学习率设置不当对SGD算法的影响,提出一种学习率自适应SGD的更新算法,随着迭代的进行该算法使学习率呈现周期性的改变。针对CNN中Relu激活函数将CNN中的阈值为负的神经元丢弃的缺陷,设计选择Leaky Relu作为激活函数的CNN。实验验证了使用该激活函数的有效性,实验结果表明,采用上述学习率更新算法的SGD可以使网络快速收敛,提高了学习正确率;通过将Leaky Relu激活函数和采用上述学习率更新算法的SGD相结合,进一步提高CNN的学习正确率。 展开更多
关键词 卷积神经网络 随机梯度下降算法 自适应学习率更新算法 LeakyRelu激活函数 快速收敛
在线阅读 下载PDF
一种基于基本显露模式的分类算法 被引量:11
13
作者 范明 刘孟旭 赵红领 《计算机科学》 CSCD 北大核心 2004年第11期211-214,共4页
本文提出了一种新的基于EP的分类法CEEP。CEEP仅使用最短的EP(eEP)建立分类器,并使用不同于早先的基于EP的分类法(如,CAEP)的评分标准。文中还讨论了eEP的有效挖掘,最小支持度和最小增长率阈值的自适应选取等问题。在UCI机器学习库中的1... 本文提出了一种新的基于EP的分类法CEEP。CEEP仅使用最短的EP(eEP)建立分类器,并使用不同于早先的基于EP的分类法(如,CAEP)的评分标准。文中还讨论了eEP的有效挖掘,最小支持度和最小增长率阈值的自适应选取等问题。在UCI机器学习库中的12个数据集上的实验表明,本文的分类方法具有很好的分类正确率。如何保证eEP有足够的履盖率,以及如何处理稀有类的分类,尚待进一步研究。此外,如何将装袋(bagging)和推进(bootstrap)的思想与CEEP的方法相结合,进一步提高分类的正确率,也是值得深入研究的问题。 展开更多
关键词 分类算法 机器学习 分类器 最小支持度 数据集 EP 自适应 正确 处理 分类法
在线阅读 下载PDF
三帧差结合改进高斯建模的运动目标检测算法 被引量:17
14
作者 魏玮 吴琪 《计算机工程与设计》 CSCD 北大核心 2014年第3期949-952,共4页
针对混合高斯模型对光照突变比较敏感以及当运动物体速度较慢时容易产生"鬼影"现象,提出了一种动态自适应学习率的高斯混合模型。通过融入帧差法将每帧的图像分为已运动区域、正在运动区域以及背景区域,分别给予不同的更新率... 针对混合高斯模型对光照突变比较敏感以及当运动物体速度较慢时容易产生"鬼影"现象,提出了一种动态自适应学习率的高斯混合模型。通过融入帧差法将每帧的图像分为已运动区域、正在运动区域以及背景区域,分别给予不同的更新率来更新高斯混合模型。为了能够适应光照或者背景突变的情况,背景区域给予动态更新率,并且给予高斯模型更快速的更新策略,使用高斯混合模型与三帧差法相结合。实验结果表明,该算法有效的处理了"鬼影"、阴影现象以及建模速度的问题,具有很好的实时性以及抗干扰能力,能够精确的检测出运动目标。 展开更多
关键词 高斯混合模型 动态自适应学习 三帧差法 运动目标检测 高斯混合模型更新策略
在线阅读 下载PDF
公路隧道围岩变形时程曲线拟合的BP算法 被引量:11
15
作者 周建春 魏琴 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第4期79-84,共6页
运用 BP算法学习率自适应调整策略 ,对公路隧道新奥法正台阶施工开挖过程中围岩变形时程曲线的拟合进行了研究 。
关键词 时程曲线 BP算法 公路隧道 围岩变形 BP神经网络 曲线拟合 学习自适应调整策略
在线阅读 下载PDF
BP改进算法在哮喘症状-证型分类预测中的应用 被引量:2
16
作者 董国华 陈亚楠 朱习军 《计算机工程与设计》 北大核心 2017年第1期215-219,共5页
针对BP算法学习率需要人为不断调试且收敛速度慢的缺点,通过对其算法性能进行分析,提出一种基于竞争学习与学习率自适应的改进BP算法,即CAL-BP算法。将改进算法用于哮喘症状-证型的分类预测实验中,将BP算法与CAL-BP算法对哮喘症状-证型... 针对BP算法学习率需要人为不断调试且收敛速度慢的缺点,通过对其算法性能进行分析,提出一种基于竞争学习与学习率自适应的改进BP算法,即CAL-BP算法。将改进算法用于哮喘症状-证型的分类预测实验中,将BP算法与CAL-BP算法对哮喘症状-证型数据的训练效果做了对比,实验结果表明,采用改进的CAL-BP算法训练数据时收敛速度更快,识别率更高。 展开更多
关键词 BP神经网络 竞争学习 学习自适应 CAL-BP算法 哮喘症状-证型
在线阅读 下载PDF
基于改进型BP算法的外债风险指标预测 被引量:3
17
作者 陈雄华 林成德 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第5期1017-1021,共5页
利用人工神经网络进行时间序列预测是一种较新的方法 ,它具有不需建立复杂的数学模型以及非线性映射能力强等优点 .采用动量法和学习率自适应调整的改进型 BP算法对外债风险的各项指标进行了非线性时间序列的预测 。
关键词 外债风险 非线性时间序列预测 人工神经网络 BP算法 指标预测 动量法 学习自适应调速
在线阅读 下载PDF
基于粒球原型网络的小样本图像分类方法
18
作者 白瑞峰 苟光磊 +1 位作者 文浪 缪宛谕 《计算机应用》 北大核心 2025年第7期2269-2277,共9页
针对小样本学习中训练数据稀少以及单一距离度量无法全面衡量样本之间关系的问题,提出一种基于粒球原型网络(GBProtoNet)的小样本图像分类方法。首先,将粒球算法(Ball k-means)应用于查询集,并通过自适应更新迭代得到查询集类别信息,之... 针对小样本学习中训练数据稀少以及单一距离度量无法全面衡量样本之间关系的问题,提出一种基于粒球原型网络(GBProtoNet)的小样本图像分类方法。首先,将粒球算法(Ball k-means)应用于查询集,并通过自适应更新迭代得到查询集类别信息,之后将这些信息与原型网络(ProtoNet)结合,构造具有查询集与支持集信息的粒球原型,从而缓解训练数据量少的问题;其次,在GBProtoNet特征提取后,设计一个特征筛选模块用于提取样本的重要信息,利用Ball k-means算法得到查询集各类的簇心,并把它们与初始原型进行加权融合,以构造更具代表性的粒球原型;再次,计算初始查询集样本与粒球原型的欧氏距离与余弦距离,并将二者相乘得到综合考量的距离,从而使样本间距离的度量更全面;最后,按照最邻近分配原则,将查询集样本分配给所属类别。实验结果表明,在MiniImageNet和TieredImageNet数据集的5-way 1-shot和5-way 5-shot的图像分类任务中,相较于基线模型ProtoNet,所提方法在MiniImageNet数据集上分类准确率分别提升了6.18%和3.85%,而在TieredImageNet数据集上分别提升了6.89%和3.57%。并且,所提方法在MiniImageNet数据集5-shot图像分类任务上所需时间成本比SSL-ProtoNet(Self-Supervised Learning Prototypical Network)减少了72.6%。可见,所提方法在有效提高小样本图像分类准确度的同时具有高效性。 展开更多
关键词 Ball k-means算法 粒球原型 综合度量 小样本学习 自适应 迭代更新
在线阅读 下载PDF
多策略融合的改进黏菌算法 被引量:13
19
作者 邱仲睿 苗虹 曾成碧 《计算机应用》 CSCD 北大核心 2023年第3期812-819,共8页
针对标准黏菌算法(SMA)存在的容易陷入局部最优解、收敛速度慢以及求解精度低等问题,提出一种多策略融合的改进黏菌算法(MSISMA)。首先,引入布朗运动和莱维飞行机制以增强算法的搜索能力;其次,根据算法进行的不同阶段分别改进黏菌的位... 针对标准黏菌算法(SMA)存在的容易陷入局部最优解、收敛速度慢以及求解精度低等问题,提出一种多策略融合的改进黏菌算法(MSISMA)。首先,引入布朗运动和莱维飞行机制以增强算法的搜索能力;其次,根据算法进行的不同阶段分别改进黏菌的位置更新公式,以提高算法的收敛速度和收敛精度;然后,应用区间自适应的反向学习(IAOBL)策略生成反向种群,以提升种群的多样性和质量,从而提高算法的收敛速度;最后,引入收敛停滞监测策略,当算法陷入局部最优时,通过对部分黏菌个体的位置重新初始化使算法跳出局部最优。选取23个测试函数,将MSISMA与平衡黏菌算法(ESMA)、黏菌-自适应引导差分进化混合算法(SMA-AGDE)、SMA、海洋捕食者算法(MPA)和平衡优化器(EO)进行测试和比较,并对算法运行结果进行Wilcoxon秩和检验。相较于对比算法,MSISMA在19个测试函数上获得最佳平均值,在12个测试函数上获得最佳标准差,优化精度平均提升23.39%~55.97%。实验结果表明,MSISMA的收敛速度、求解精度和鲁棒性明显较优。 展开更多
关键词 黏菌算法 区间自适应反向学习 布朗运动 莱维飞行 更新策略
在线阅读 下载PDF
基于改进粒子群优化极限学习机的弹丸参数辨识 被引量:8
20
作者 夏悠然 管军 易文俊 《系统工程与电子技术》 EI CSCD 北大核心 2023年第2期521-529,共9页
针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。... 针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。该算法利用自适应变异粒子群算法寻优产生极限学习机的输入权重和隐含层阈值,有效改善算法性能。仿真实验表明,利用自适应变异粒子群优化极限学习机算法辨识弹丸气动参数,精度高、收敛速度快,能够充分满足实际工程需要。 展开更多
关键词 弹丸 气动参数辨识 极限学习 粒子群优化算法 自适应更新策略 粒子变异策略
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部