将引导滤波与提升小波相结合提出了一种多尺度引导滤波方法,以实现在平滑图像细节的同时保持图像边缘不模糊。该方法通过提升小波法对将图像进行多尺度分解,即将信号分解成一个低频子带和多个高频子带。在提升小波重构过程中,利用引导...将引导滤波与提升小波相结合提出了一种多尺度引导滤波方法,以实现在平滑图像细节的同时保持图像边缘不模糊。该方法通过提升小波法对将图像进行多尺度分解,即将信号分解成一个低频子带和多个高频子带。在提升小波重构过程中,利用引导滤波平滑每个尺度的低频信息并保持其边缘不模糊。最后,针对滤波后残余的细节,对提升小波重构后的平滑图像再次进行引导滤波,以便进一步平滑图像细节。将多尺度引导滤波应用于暗通道去雾先验理论并进行了主、客观评价。结果显示:多尺度引导滤波能够深层次平滑图像细节,保持边缘完整性,从整体上提高了图像的对比对和视觉效果,有效恢复了场景信息并保留场景的边缘信息。另外,该方法改善了客观评价指标,其对比度增强系数指标平均提升了0.1以上,场景结构相似度平均提升了1以上,而LOE(Lightness Order Error)参数降低了10以上,满足了去雾应用的视觉需求。展开更多
文章针对基于坡度滤波算法在地形复杂地区中难以合理设置滤波阈值的问题,提出了一种基于多尺度网格的点云自适应坡度滤波的算法。首先在构建的多尺度的虚拟网格内选取最优点作为初始地面种子点,计算网格的点云空间占比并划分网格语义属...文章针对基于坡度滤波算法在地形复杂地区中难以合理设置滤波阈值的问题,提出了一种基于多尺度网格的点云自适应坡度滤波的算法。首先在构建的多尺度的虚拟网格内选取最优点作为初始地面种子点,计算网格的点云空间占比并划分网格语义属性,然后利用地形计算因子求得每个网格的坡度分类阈值,再按网格尺度由大到小的方式对整体点云进行坡度滤波,得出真实的地面点云数据。文中采用了多种地形的光探测和测距(Light Detection and Ranging,LiDAR)(简称“激光雷达”)数据来验证该算法,结果表明,该算法能够有效去除地面上的植被、建筑物等地物点,保留真实的地面点云数据。该算法重点解决了在伴随地形变化时坡度滤波阈值的计算和自适应设置问题,以及在地形变化剧烈的边缘地带过度滤波的问题。展开更多
文摘将引导滤波与提升小波相结合提出了一种多尺度引导滤波方法,以实现在平滑图像细节的同时保持图像边缘不模糊。该方法通过提升小波法对将图像进行多尺度分解,即将信号分解成一个低频子带和多个高频子带。在提升小波重构过程中,利用引导滤波平滑每个尺度的低频信息并保持其边缘不模糊。最后,针对滤波后残余的细节,对提升小波重构后的平滑图像再次进行引导滤波,以便进一步平滑图像细节。将多尺度引导滤波应用于暗通道去雾先验理论并进行了主、客观评价。结果显示:多尺度引导滤波能够深层次平滑图像细节,保持边缘完整性,从整体上提高了图像的对比对和视觉效果,有效恢复了场景信息并保留场景的边缘信息。另外,该方法改善了客观评价指标,其对比度增强系数指标平均提升了0.1以上,场景结构相似度平均提升了1以上,而LOE(Lightness Order Error)参数降低了10以上,满足了去雾应用的视觉需求。
文摘文章针对基于坡度滤波算法在地形复杂地区中难以合理设置滤波阈值的问题,提出了一种基于多尺度网格的点云自适应坡度滤波的算法。首先在构建的多尺度的虚拟网格内选取最优点作为初始地面种子点,计算网格的点云空间占比并划分网格语义属性,然后利用地形计算因子求得每个网格的坡度分类阈值,再按网格尺度由大到小的方式对整体点云进行坡度滤波,得出真实的地面点云数据。文中采用了多种地形的光探测和测距(Light Detection and Ranging,LiDAR)(简称“激光雷达”)数据来验证该算法,结果表明,该算法能够有效去除地面上的植被、建筑物等地物点,保留真实的地面点云数据。该算法重点解决了在伴随地形变化时坡度滤波阈值的计算和自适应设置问题,以及在地形变化剧烈的边缘地带过度滤波的问题。