期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EKF-HInformer模型估计汽车动力电池的SOC&SOH 被引量:1
1
作者 彭自然 杨肖阳 肖伸平 《电子测量与仪器学报》 北大核心 2025年第3期21-33,共13页
针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一... 针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。 展开更多
关键词 动力电池 荷电状态 健康状态 自适应增益因子 扩展卡尔曼滤波 Hampel优化算法 INFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部