考虑数字图像滤波处理对融线性和非线性于一体的数学模型的需求,根据Weierstrass逼近理论推导建立了通用的自回归数学模型。该模型将线性自回归模型和非线性自回归模型融合于一个统一的数学表达式中,仿真实验表明其能够较好地拟合现有...考虑数字图像滤波处理对融线性和非线性于一体的数学模型的需求,根据Weierstrass逼近理论推导建立了通用的自回归数学模型。该模型将线性自回归模型和非线性自回归模型融合于一个统一的数学表达式中,仿真实验表明其能够较好地拟合现有的线性和非线性自回归模型。用二维向量取代标量参数,推导了通用自回归模型的二维数学表达式。通过对比分析,确定采用GM(Generalized M estimator)参数估计法进行参数估计。实验结果表明,该算法收敛较快,平均迭代次数不超过6次,线性模型平均计算耗时为150s,二次模型平均耗时为418s。提出的二维通用自回归模型滤波方法能较好地保留图像的细节信息,图像滤波效果好。展开更多
文摘传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving averaging vector,ARMAV)辨识在电网正常运行过程中针对由负荷等随机扰动引起的类噪声信号进行;在综合考虑辨识误差、阻尼要求和稳定裕度基础上,提出阻尼控制零极点配置基本原则,并设计相应的遗传算法优化方法。为了充分检验上述辨识与控制系统的效果,基于广域测量平台对其进行软硬件实现,并在东北电网简化系统中进行实时数字仿真(real time digital simulation,RTDS)测试,实验结果说明了所提方法的可行性和有效性。
文摘考虑数字图像滤波处理对融线性和非线性于一体的数学模型的需求,根据Weierstrass逼近理论推导建立了通用的自回归数学模型。该模型将线性自回归模型和非线性自回归模型融合于一个统一的数学表达式中,仿真实验表明其能够较好地拟合现有的线性和非线性自回归模型。用二维向量取代标量参数,推导了通用自回归模型的二维数学表达式。通过对比分析,确定采用GM(Generalized M estimator)参数估计法进行参数估计。实验结果表明,该算法收敛较快,平均迭代次数不超过6次,线性模型平均计算耗时为150s,二次模型平均耗时为418s。提出的二维通用自回归模型滤波方法能较好地保留图像的细节信息,图像滤波效果好。