期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
基于互补自适应噪声的集合经验模式分解算法 被引量:17
1
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
2
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
3
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法 被引量:1
4
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
基于集合经验模态分解的舰船辐射噪声能量分析 被引量:15
5
作者 杨宏 李亚安 李国辉 《振动与冲击》 EI CSCD 北大核心 2015年第16期55-59,共5页
利用集合经验模态分解方法研究舰船辐射噪声的特征参数提取及分类,对预处理后三种不同类别舰船辐射噪声进行能量分析,讨论其高低频能量差特征参数。计算不同类别、一定样本数量的舰船辐射噪声高低频能量差发现,同类舰船高低频能量差基... 利用集合经验模态分解方法研究舰船辐射噪声的特征参数提取及分类,对预处理后三种不同类别舰船辐射噪声进行能量分析,讨论其高低频能量差特征参数。计算不同类别、一定样本数量的舰船辐射噪声高低频能量差发现,同类舰船高低频能量差基本处于同一水平,不同类型舰船高低频能量差存在明显差异。结果表明,利用集合经验模态分解方法提取的舰船辐射噪声特征参数对舰船类别具有较好的可分性。可为水下目标信号探测及识别提供参考。 展开更多
关键词 集合经验模态分解 舰船辐射噪声 高低频能量差 特征提取
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
6
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
基于经验模式分解和自适应神经模糊推理的风速短期智能预测混合方法 被引量:6
7
作者 刘辉 张雷 +2 位作者 田红旗 梁习锋 李燕飞 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期676-682,共7页
为实现风速的超前多步高精度预测,提出一种基于经验模式分解与自适应神经模糊推理的混合方法。该方法利用经验模式分解法对铁路风速进行多层分解计算以降低风速的强随机性,对分解后的各层风速数据分别建立自适应神经模糊推理预测模型并... 为实现风速的超前多步高精度预测,提出一种基于经验模式分解与自适应神经模糊推理的混合方法。该方法利用经验模式分解法对铁路风速进行多层分解计算以降低风速的强随机性,对分解后的各层风速数据分别建立自适应神经模糊推理预测模型并完成预测计算,最终加权各层预测值获得原实测数据的对应步数的预测结果。运用所提出的方法对青藏铁路某监控点的风速进行预测。研究结果表明:所提出的混合方法有效融合了经验模式分解法的信号细分性能和自适应神经模糊推理法的非线性追踪能力,混合模型的超前1步、2步、3步预测的平均相对误差分别为6.24%,11.11%和14.30%,体现出良好的非平稳信号预测性能。 展开更多
关键词 铁路安全 风速预测 经验模式分解 自适应模糊推理
在线阅读 下载PDF
基于经验模式分解的拖曳式声纳拖船噪声抵消研究 被引量:13
8
作者 张宾 孙长瑜 孙贵青 《应用声学》 CSCD 北大核心 2007年第2期68-73,共6页
拖曳式线列阵声纳的拖船噪声具有多途角扩展等特点,并且是一个非平稳过程,使得对该噪声的消除或抑制是一大难点。经验模式分解是一种用于分析非线性非平稳信号的新方法,该方法自适应地将嵌于数据内部的多个固有模式函数逐一分解开来。... 拖曳式线列阵声纳的拖船噪声具有多途角扩展等特点,并且是一个非平稳过程,使得对该噪声的消除或抑制是一大难点。经验模式分解是一种用于分析非线性非平稳信号的新方法,该方法自适应地将嵌于数据内部的多个固有模式函数逐一分解开来。本文尝试利用经验模式分解方法分离出水听器接收信号中的拖船干扰噪声,从而达到消除干扰的目的。海上试验数据的处理结果充分验证了这种方法的可行性。 展开更多
关键词 拖曳式线列阵声纳 噪声抵消 经验模式分解 固有模式函数
在线阅读 下载PDF
基于自适应噪声完整聚合经验模态分解-极限学习机的短期血糖预测 被引量:6
9
作者 王延年 郭占丽 +1 位作者 袁进磊 李全忠 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第6期702-710,共9页
糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进... 糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进行分解,得到不同频段的血糖分量IMF(本征模态函数)和残余分量,以降低血糖时间序列的非平稳性;然后对各血糖分量IMF和残余分量分别构建极限学习机,并将各极限学习机的预测结果融合,获得患者未来血糖浓度的预测值,提高预测精度;在此基础上,进行低血糖预警。利用从河南省人民医院内分泌科采集的56例患者的数据进行模型检验,结果表明:与ELM模型和EMD-ELM模型相比,CEEMDAN-ELM短期血糖预测模型提前45 min的预测仍可达到较高预测水平(RMSE=0.205 1,MAPE=2.116 4%);低血糖预警虚警率和漏警率分别为0.97%和7.55%。血糖预测时间的延长,可以为医生和患者提供充足时间进行血糖浓度控制,提高糖尿病治疗的效果。 展开更多
关键词 血糖预测 低血糖预警 自适应噪声完整聚合经验模态分解 极限学习机
在线阅读 下载PDF
f-x域经验模式分解与多道奇异谱分析相结合去除随机噪声 被引量:17
10
作者 刘婷婷 陈阳康 《石油物探》 EI CSCD 北大核心 2016年第1期67-75,共9页
近年来,经验模式分解法(EMD)因其处理非稳态地震信号的能力和易于实现而备受关注。总结了EMD在地震去噪中的应用情况,提出了一种基于f-x域EMD和多道奇异谱分析(MSSA)相结合的去噪新方法。该方法不同于f-x域EMD分别与f-x域预测滤波、小... 近年来,经验模式分解法(EMD)因其处理非稳态地震信号的能力和易于实现而备受关注。总结了EMD在地震去噪中的应用情况,提出了一种基于f-x域EMD和多道奇异谱分析(MSSA)相结合的去噪新方法。该方法不同于f-x域EMD分别与f-x域预测滤波、小波阈值、曲波变换等相结合的各种去噪方法,它可以得到比f-x域MSSA更高的信噪比并能预测f-x域EMD中损失掉的线性能量。该方法的实现过程为:首先,对地震剖面应用f-x域EMD,保留所有相对水平的同相轴,这样在噪声剖面中留下很少的倾斜信号和随机噪声,然后在差异剖面中应用f-x域MSSA恢复倾斜信号,最后将水平信号和倾斜信号相加得到去噪剖面。理论测试和实际数据的处理结果验证了该方法的优越性。 展开更多
关键词 去除随机噪声 经验模式分解 多道奇异谱分析法 F-X域 恢复倾斜同相轴
在线阅读 下载PDF
基于集合经验模式分解和K-奇异值分解字典学习的滚动轴承故障诊断 被引量:7
11
作者 李继猛 李铭 +3 位作者 姚希峰 王慧 于青文 王向东 《计量学报》 CSCD 北大核心 2020年第10期1260-1266,共7页
针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动... 针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动信号进行预处理,剔除谐波干扰;其次,利用经典K-奇异值分解算法和预处理信号构造超完备字典;然后,利用K-均值聚类算法对字典中的原子进行筛选;最后,利用正交匹配追踪算法实现冲击故障特征的稀疏表示。实验分析和工程应用验证了所提方法的有效性和实用性。 展开更多
关键词 计量学 滚动轴承 故障诊断 稀疏表示 集合经验模式分解 K-奇异值分解字典学习 K-均值聚类
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
12
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
在线阅读 下载PDF
采用集合经验模态分解和改进阈值函数的心电自适应去噪方法 被引量:24
13
作者 尹丽 陈富民 +1 位作者 张琦 陈鑫 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第1期101-107,共7页
针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采... 针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采用过零率自适应判断各IMF的噪声类别:若IMF包含高频噪声,采用结合软硬阈值优缺点所提出的改进阈值函数以去除IMF分量中的高频噪声;若IMF包含低频的基线漂移,则采用中值滤波器抑制基线漂移。最后将处理后的IMF分量叠加,即可重构去噪后的心电信号。实验结果表明,与已有的小波阈值法去噪后的信噪比(SNR)和均方根误差(RSME)对比,所提方法对心电信号去噪效果更加显著,而且能完整地保留波形特征。 展开更多
关键词 心电自适应去噪 集合经验模态分解 过零率 改进阈值函数
在线阅读 下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:16
14
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
在线阅读 下载PDF
完全互补小波噪声辅助集总经验模态分解 被引量:19
15
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 集合经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
在线阅读 下载PDF
基于改进的集合经验模态方法振动信号分解 被引量:8
16
作者 刘涛 杜世昌 +2 位作者 黄德林 任斐 梁鑫光 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第9期1452-1459,共8页
针对集合经验模态分解(EEMD)中2个重要参数白噪声幅值系数和集合平均次数的优化问题,提出了一种基于变步长模式搜索的集合经验模态方法.该方法以EEMD期望的分解误差设定值为目标,利用自适应EEMD得到的白噪声幅值系数为初值,对不同振动... 针对集合经验模态分解(EEMD)中2个重要参数白噪声幅值系数和集合平均次数的优化问题,提出了一种基于变步长模式搜索的集合经验模态方法.该方法以EEMD期望的分解误差设定值为目标,利用自适应EEMD得到的白噪声幅值系数为初值,对不同振动信号能够自动获取合适的EEMD参数,解决模态混叠问题.仿真实验和工程案例验证结果表明:与传统EEMD和自适应EEMD相比,基于变步长模式搜索的EEMD方法具有更高的分解精度及更快的运算效率. 展开更多
关键词 集合经验模态分解 变步长模式搜索 振动信号 模态混叠
在线阅读 下载PDF
基于小波变换和经验模式分解的心音信号研究 被引量:16
17
作者 郭兴明 袁志会 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第1期39-44,共6页
针对经验模式分解(EMD)中的端点效应问题,本研究提出先用小波去除噪声干扰,再用EMD方法提取心音信号的特征。对于EMD的端点延拓,采用一种新的自适应波形匹配端点延拓方法。通过小波去噪,克服了直接运用EMD分解时无用频率分量带来的干扰... 针对经验模式分解(EMD)中的端点效应问题,本研究提出先用小波去除噪声干扰,再用EMD方法提取心音信号的特征。对于EMD的端点延拓,采用一种新的自适应波形匹配端点延拓方法。通过小波去噪,克服了直接运用EMD分解时无用频率分量带来的干扰,有效地减少EMD的分解层数,自适应波形匹配延拓方法充分考虑了心音信号的内在规律与端点处的变化趋势,较之传统的延拓方法更加合理。用所提出的方法对心音信号进行EMD分解,并用双阈值法对分解后的信号进行第一心音(S1)第二心音(S2)的定位分析,通过对40例心音信号定位分析,S1和S2的检出率分别达到97.05%和97.12%。表明该分析方法能够有效地抑制端点效应,提高EMD分解的准确性和时效性,为后续心音的分析提供准确的参考信息。 展开更多
关键词 端点效应 小波去噪 经验模式分解 自适应波形匹配
在线阅读 下载PDF
基于改进型集合经验模态分解的谐波检测方法 被引量:2
18
作者 朱晓青 王飞刚 李圣清 《新型工业化》 2019年第1期8-12,共5页
由于大功率器件使用,造成电网中有大量谐波,威胁设备的安全。本文提出运用改进型集合经验模态(Ensembel Empirical Mode Decomposition,EEMD)算法来检测电力系统谐波。首先,针对在EEMD分解过程中,由于白噪声信号的添加,势必会对各模态... 由于大功率器件使用,造成电网中有大量谐波,威胁设备的安全。本文提出运用改进型集合经验模态(Ensembel Empirical Mode Decomposition,EEMD)算法来检测电力系统谐波。首先,针对在EEMD分解过程中,由于白噪声信号的添加,势必会对各模态函数造成影响,提出添加正负幅值相反的白噪声信号,以消除其带来的弊端。其次,运用施密特正交化理论,对各个模态函数进行正交化,从而避免模态混叠现象,提高了谐波检测精度。最后,经过与其它检测方法的仿真对比,证明了本文所述方法具有较高的检测精度。 展开更多
关键词 集合经验模态分解 模态函数 噪声 施密特正交
在线阅读 下载PDF
地基观测红外目标二维经验模式分解检测方法及应用
19
作者 陈略 唐歌实 +2 位作者 王保丰 路伟涛 王欣 《载人航天》 CSCD 北大核心 2018年第2期191-195,共5页
针对复杂条件下的地基观测红外图像目标检测问题,引入二维经验模式分解(BEMD)方法对复杂条件下的目标红外实测图像进行了处理分析:首先对目标观测原始红外图像进行中值滤波,对原始红外图像进行噪声抑制预处理;然后利用BEMD算法对预处理... 针对复杂条件下的地基观测红外图像目标检测问题,引入二维经验模式分解(BEMD)方法对复杂条件下的目标红外实测图像进行了处理分析:首先对目标观测原始红外图像进行中值滤波,对原始红外图像进行噪声抑制预处理;然后利用BEMD算法对预处理后红外图像进行自适应分解,获得按频段分布的二维基本模式分量与残余图像,并对分解后的红外图像进行有效重构,获取处理后的红外目标图像;最后利用点锐度方法定量评估目标红外图像处理效果,并与原始红外图像进行比对分析。基于实测红外图像处理结果表明,BEMD方法有效抑制了云层背景杂波噪声,且有效检测出清晰的红外目标,处理后的红外图像清晰度较原始红外图像显著提高。 展开更多
关键词 二维经验模式分解 航天器 红外图像 噪声抑制 点锐度
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
20
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部