期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
1
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:16
2
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
在线阅读 下载PDF
基于自适应噪声完整聚合经验模态分解-极限学习机的短期血糖预测 被引量:6
3
作者 王延年 郭占丽 +1 位作者 袁进磊 李全忠 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第6期702-710,共9页
糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进... 糖尿病患者的血糖浓度时间序列具有时变、非线性和非平稳的特点,为提高血糖预测精度,提出一种自适应噪声的完整聚合经验模态分解(CEEMDAN)与极限学习机(ELM)相结合的短期血糖预测模型。首先,利用CEEMDAN方法将患者的血糖浓度时间序列进行分解,得到不同频段的血糖分量IMF(本征模态函数)和残余分量,以降低血糖时间序列的非平稳性;然后对各血糖分量IMF和残余分量分别构建极限学习机,并将各极限学习机的预测结果融合,获得患者未来血糖浓度的预测值,提高预测精度;在此基础上,进行低血糖预警。利用从河南省人民医院内分泌科采集的56例患者的数据进行模型检验,结果表明:与ELM模型和EMD-ELM模型相比,CEEMDAN-ELM短期血糖预测模型提前45 min的预测仍可达到较高预测水平(RMSE=0.205 1,MAPE=2.116 4%);低血糖预警虚警率和漏警率分别为0.97%和7.55%。血糖预测时间的延长,可以为医生和患者提供充足时间进行血糖浓度控制,提高糖尿病治疗的效果。 展开更多
关键词 血糖预测 低血糖预警 自适应噪声完整聚合经验模态分解 极限学习机
在线阅读 下载PDF
基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法 被引量:3
4
作者 钟小勇 陈科安 张小红 《工矿自动化》 北大核心 2022年第7期118-124,共7页
钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用... 钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用电磁检测法。将ICEEMD、小波阈值滤波(WTF)、维纳滤波(WF)相结合,得到ICEEMD-WTF-WF多级降噪方法:通过ICEEMD分解钢丝绳漏磁信号,得到本征模态函数(IMF)分量;计算IMF分量的能量比、排列熵、互相关系数,取出IMF趋势分量和IMF股波噪声分量,并对股波噪声分量进行WTF,筛选有用的IMF分量重构信号;对重构后的信号进行WF,去除随机噪声。提取降噪后的缺陷特征值,输入BP神经网络并进行训练,识别钢丝绳缺陷漏磁信号。实验结果表明:ICEEMD-WTF-WF多级降噪方法对钢丝绳漏磁信号具有良好的降噪效果,信噪比、峭度指标优于WTF、移动平均滤波和WF;基于ICEEMD-WTF-WF的BP神经网络模型检测耗时短,对小缺陷的平均准判率达到98.13%,能较好地满足钢丝绳缺陷检测要求。 展开更多
关键词 钢丝绳 小缺陷检测 漏磁检测 改进完备集成经验模态分解 小波阈值滤波 维纳滤波 多级降噪
在线阅读 下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:17
5
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解与小波变换相结合的GPS/BDS-3多路径误差削弱研究
6
作者 童润发 《现代信息科技》 2022年第15期45-47,51,共4页
多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的... 多路径误差是GNSS短基线相对定位过程中主要的误差源,已经影响定位的精度。针对经验模态分解(EMD)存在断点效应和模态混叠问题,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波变换(WT)的提取GNSS多路径的方法。通过两天的GPS/BDS-3的实测数据处理分析,实验结果表明,采用CEEMDAN-WT提取多路径相关系数高于小波分析、经验模态分解(EMD),实时削弱多路径误差中使用CEEMDAN-WT比其他两者方法效果更好。 展开更多
关键词 GPS BDS-3 完全自适应噪声集合经验模态分解 恒星日滤波
在线阅读 下载PDF
经验模态分解和稀疏表示的SAR图像去噪方法 被引量:4
7
作者 刘柏森 张晔 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第9期1297-1301,共5页
相干斑噪声严重影响了SAR图像的应用,为降低这个影响,本文提出了一种经验模态分解和稀疏表示相结合的去噪方法。该方法利用经验模态分解是由数据驱动这一特点,把含噪SAR图像自适应的分解为若干固有模态分量,根据这些固有模态分量的时频... 相干斑噪声严重影响了SAR图像的应用,为降低这个影响,本文提出了一种经验模态分解和稀疏表示相结合的去噪方法。该方法利用经验模态分解是由数据驱动这一特点,把含噪SAR图像自适应的分解为若干固有模态分量,根据这些固有模态分量的时频特性,判断噪声在固有模态分量的分布情况。由于噪声的分布相对于图像目标分布具有孤立性、随机性的特点,采用稀疏表示方法对含噪的固有模态分量进行分解,通过估计固有模态分量的噪声强度,重构各固有模态分量,将处理后的以及未处理的各固有模态分量进行经验模态分解的重构,以此达到去噪的目的。为验证该算法的有效性,进行了对比实验,通过客观评价标准证明了该方法在细节信息保持等方面优于其他方法,是一种针对SAR图像的有效去噪方法。 展开更多
关键词 SAR图像去噪 经验模态分解 稀疏表示 自适应 合成孔径雷达 固有模态分量 相干斑噪声
在线阅读 下载PDF
雨刮-风窗摩擦噪声声品质主动控制自适应均衡算法 被引量:1
8
作者 范会志 郭辉 +3 位作者 冯庆宝 孙裴 王岩松 陆仲辉 《振动与冲击》 EI CSCD 北大核心 2024年第8期263-271,共9页
雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decompos... 雨刮-风窗摩擦噪声是影响车内声品质的重要因素之一,对其声品质主动控制有利于改善车内声学环境。为了实现对雨刮-风窗摩擦噪声声品质主动控制,提出一种基于集合经验模态分解的权重约束自适应噪声均衡(ensemble-empirical-mode-decomposition weight constrained adaptive noise equalizer,EWCANE)算法。首先通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解雨刮-风窗摩擦噪声得到非平稳度较低的固有模式函数分量,计算各分量的方差比以表征各分量对噪声的影响程度;然后基于输入信号和误差信号的欧式范数以自适应对滤波器权重进行约束来降低噪声的瞬态冲击;最后根据方差比调整声音增益因子以均衡各分量的声品质主动控制。经过仿真验证,实车雨刮-风窗摩擦噪声信号响度得到有效降低,改善了雨刮-风窗摩擦噪声的声品质。 展开更多
关键词 雨刮-风窗 声品质主动控制 集合经验模态分解(EEMD) 自适应噪声均衡(ANE)算法
在线阅读 下载PDF
基于Transformer和ARMA双数据驱动模型的抽水蓄能机组劣化趋势集成预测
9
作者 钟子威 祝令凯 +3 位作者 郭俊山 郑威 巩志强 商攀峰 《水电能源科学》 北大核心 2025年第3期191-195,共5页
为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根... 为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根据分解所得分量的不同时间尺度特性,利用Transformer模型对非线性分量进行预测,利用ARMA模型对线性分量进行预测,最后将预测值叠加得到最终预测结果。利用某抽水蓄能机组监测数据进行试验,结果表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组劣化趋势预测准确性。 展开更多
关键词 劣化趋势预测 完全自适应噪声集成经验模态分解 TRANSFORMER 自回归滑动平均
在线阅读 下载PDF
基于多尺度分解的微地震噪声压制与初至检测方法研究 被引量:8
10
作者 唐杰 温雷 +1 位作者 李聪 戚瑞轩 《石油物探》 EI CSCD 北大核心 2019年第4期517-523,共7页
地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提... 地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提出了一种自适应间隔阈值去除固有模态中噪声成分的方法,最后将去噪后的分量相加重构去噪后的信号。应用Hilbert变换计算每个分量的振幅,然后计算持续能量比,利用给定的阈值找到局部最大值,计算得到高能量的地震信号的到达时间。理论模型数据及实际微地震资料的处理结果表明,去噪后数据的信噪比得到了改进,相对于传统的空间域滤波与变换域阈值去噪,该去噪方法具有显著的优势及较好的应用价值,与Hilbert变换结合的初至检测方法可以有效地检测微地震信号初至。 展开更多
关键词 微地震 随机噪声压制 改进的完备总体经验模态分解 固有模态函数 自适应间隔阈值 重构 初至检测
在线阅读 下载PDF
基于多尺度分解集成组合模型的碳价格预测研究 被引量:6
11
作者 王喜平 于一丁 《分布式能源》 2022年第1期1-11,共11页
准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成... 准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)算法对碳价原始序列进行分解,并以综合贡献度指数(comprehensive contribution index,CCI)对分量进行重构,得到短期、长期和趋势分量;然后,采用门限广义自回归条件异方差(threshold generalized auto-regressive conditional heteroscedasticity,TGARCH)模型预测短期分量,以布谷鸟搜索(cuckoo search,CS)算法优化超参数的长短期记忆(long-short term memory,LSTM)神经网络预测长期和趋势分量;在此基础上,采用非线性集成算法对各分量预测结果进行集成,得到最终的碳价预测结果。以湖北碳市场为样本数据进行实证分析,结果表明所构建的预测模型性能最优,预测结果更准确,可为监管部门和企业决策提供有效信息。 展开更多
关键词 碳价格预测 长短期记忆(LSTM)模型 门限广义自回归条件异方差(TGARCH)模型 改进型自适应噪声完备集成经验模态(ICEEMDAN)分解 超参数优化
在线阅读 下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取 被引量:2
12
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
13
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
一种基于模态分解和机器学习的锂电池寿命预测方法 被引量:11
14
作者 肖浩逸 何晓霞 +1 位作者 梁佳佳 李春丽 《储能科学与技术》 CAS CSCD 北大核心 2022年第12期3999-4009,共11页
锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动... 锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动分量里的噪音对模型预测能力的影响,且又不完全抛弃波动分量里的特征信息,本工作提出使用随机森林(RF)算法得到每个波动分量的重要性排序和数值,以此作为每个分量对原始数据解释能力的权重。然后将权重值和不同波动分量构建的神经网络模型得到的预测结果进行加权重构,进而得到锂离子电池的RUL预测。文章对比了单一模型和组合模型预测精度,加入了RF的组合模型预测精度让五种神经网络的表现都有进一步的提升。最后,对表现较好的两种网络——LSTM和GRU引入了简单编码解码(SED)的机制,让其更好地学习到序列数据全局时间上的特征和远程的依赖关系。以NASA数据集作为研究对象进行该方法的性能测试。实验结果表明,CEEMDAN-RF-SED-LSTM模型对电池RUL预测表现效果好,预测结果相比单一模型具有更低的误差。 展开更多
关键词 锂离子电池 寿命预测 自适应噪声完整集成经验模态分解 随机森林 神经网络
在线阅读 下载PDF
基于多模态低秩处理的沙漠地震随机噪声压制 被引量:1
15
作者 张珊 李月 《吉林大学学报(信息科学版)》 CAS 2020年第2期111-118,共8页
沙漠地带的随机噪声使沙漠地震记录中的有效信号很大程度上被淹没。针对此问题,提出将自适应噪声辅助的集合经验模态分解方法(CEEMDAN:Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)与鲁棒标准正交子空间方法(R... 沙漠地带的随机噪声使沙漠地震记录中的有效信号很大程度上被淹没。针对此问题,提出将自适应噪声辅助的集合经验模态分解方法(CEEMDAN:Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)与鲁棒标准正交子空间方法(ROSL:Robust Orthonormal Subspace Learning)有效融合。首先利用CEEMDAN算法对沙漠地震数据进行分解,将分解得到的所有模态拼成一幅新记录,并对其进行低秩分解,再将得到的稀疏部分中每道的所有模态重新叠加获得去噪结果。二者相结合,不仅解决了单一的低秩处理对沙漠地震数据效果不明显的问题,同时也规避了要对CEEMDAN算法分解得到的模态进行取舍的难题。模拟实验和实际数据处理表明,该算法压制低频随机噪声具有明显的优势,同时对有效信号的保幅均能保证在85%以上,对实际数据中面波的压制也相对比较彻底。 展开更多
关键词 自适应噪声辅助的集合经验模态分解 鲁棒标准正交子空间 随机噪声 沙漠地震信号
在线阅读 下载PDF
基于CEEMDAN-WSVD组合串扰消除法车内噪声源识别 被引量:3
16
作者 李艺江 陈克 《噪声与振动控制》 CSCD 北大核心 2024年第4期224-230,共7页
为解决车内噪声源识别中结构路径易受外部因素干扰,以及多源振动串扰影响,导致采集的工况数据存在噪声等问题,提出基于自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)... 为解决车内噪声源识别中结构路径易受外部因素干扰,以及多源振动串扰影响,导致采集的工况数据存在噪声等问题,提出基于自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)的CEEMDAN-WSVD组合去噪法,该方法利用自适应加噪特征避免模态混叠现象发生,引入样本熵对高频含噪分量进行小波变换(Wavelet Transform,WT),实现一层降噪后进行重构;并采用奇异值分解(Singular Value Decomposition,SVD)对重构信号获取主分向量,同时使用主分量衰减方法剔除较小主分量,实现二层降噪。运用模拟仿真信号验证上述方法对复杂含噪信号有降噪效果。通过对采集的工况数据降噪处理,计算路径传递率并得到贡献量。将各降噪方法应用于工况传递路径模型中对比分析,发现经过本文方法降噪后模型的合成响应与实测响应准确性较高,降噪效果较优。 展开更多
关键词 声学 完备集合经验模态分解 小波变换 奇异值分解 工况传递路径 噪声源识别
在线阅读 下载PDF
基于二次分解和JSO-TCN模型的短期光伏功率预测
17
作者 钟璐 杨华 +4 位作者 李世林 亢丽君 马光文 朱燕梅 黄炜斌 《水力发电》 CAS 2024年第11期74-80,105,共8页
针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然... 针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然后分别计算各分量的样本熵,并通过K-means++聚类为高频、中频和低频3个分量,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解;最终将处理后的数据输入到时序卷积网络(TCN)中并采用水母优化算法(JSO)对TCN进行参数优选。以西南地区某光伏电站为例,相比于其他模型,本模型在3类指标上均具有优势,决定系数(R 2)为98.29%、平均绝对误差(MAE)为0.481 MW、均方根误差(RMSE)为0.674 MW。由此可知,基于二次分解和JSO-TCN模型预测精度高、误差小,能够为该地区电网调度提供参考。 展开更多
关键词 光伏功率 预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-means++聚类 水母优化算法 时序卷积网络
在线阅读 下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
18
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
在线阅读 下载PDF
基于实时滑动分解的融合时空图卷积流量预测研究
19
作者 牛帅 王景升 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4002-4013,共12页
为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑... 为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑动分解方法,此方法使得训练集随着时间轴动态变化,在每次分解过程中使用的均是实时和历史信息并未使用未来信息,更加符合实时预测任务需求。紧接着,利用自适应噪声完备集合经验模态分解技术将交通流数据进行分解得到一系列本征模态函数分量,将分量分别按照邻近、日和周相关等时段构建多尺度输入以表达时序数据的时间相似性;然后,构建一个时空融合网络有向图,有向图由表示时间相似性的时间图和反映空间连通流向性的空间图组成,用以表达路网节点所包含的时空相似性信息;同时,在模型训练过程中通过引入时空注意力机制使得模型自适应为时空关系分配不同的权重以便关注相似性更强的关键节点来提高模型预测精度。最后,为了验证EASTGCN模型的稳定性和鲁棒性,分别设计了多因素输入实验和多步长对比实验,并在公开的数据集上进行了实例验证。研究结果表明,EASTGCN模型在多步长预测任务中指标增幅跨度最小且性能最稳定;多因素输入的EASTGCN模型在PEMS04数据集的MAE、RMSE指标上相对于单因素输入模型来说分别降低3.83%~27.03%、4.24%~12.77%,在PEMS08数据集的MAE、RMSE指标上降低0.91%~38.69%、0.07%~31.21%。总的来说,EASTGCN模型不论是在长期预测任务还是在预测精度上均有更好的表现,实时滑动分解方法为“分解+预测”组合模型提供了一种新的思路。 展开更多
关键词 流量预测 时空图卷积 自适应噪声完备集合经验模态分解 多尺度输入 实时滑动
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
20
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部