期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种基于随机森林的OFDM系统自适应算法 被引量:1
1
作者 王波 刘潇然 +2 位作者 熊俊 辜方林 张晓瀛 《信号处理》 CSCD 北大核心 2024年第6期1007-1018,共12页
针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间... 针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。 展开更多
关键词 正交频分复用 合成少数类过采样技术 随机森林 自适应算法
在线阅读 下载PDF
基于Stacking集成学习的空管危险源数据分类
2
作者 王洁宁 闫思卿 孙禾 《科学技术与工程》 北大核心 2025年第20期8583-8594,共12页
在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下... 在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下迫切需要开发适用于空管系统的高效分类方法,以提高飞行安全水平。针对单一学习器用于空管危险源文本分类存在的类别分布较多,难以捕捉类别数据不平衡时的文本特征导致预测精度下降的问题,提出基于Stacking训练思想的、两次加权的改进集成模型。首先,参考双防机制对危险源和安全隐患完成类别划分;再采用词频-逆文档频率(term frequency-inverse document frequency, TF-IDF)算法提取预处理后的危险源文本特征完成向量化,并利用合成少数类过采样技术(synthetic minority over-sampling technique, SMOTE)和自适应合成过采样算法(adaptive synthetic sampling approach, ADASYN)分别随机生成向量化后的少数类文本,使文本数据集的类别分布趋于平衡;再从基学习器每折交叉验证的F1分数加权和基学习器之间敏感性评估机制动态加权两方面改进Stacking集成模型,提高类别不平衡危险源文本的分类性能。在所构建的数据集上的实验结果表明:相较于SMOTE+改进集成模型,ADASYN+改进集成模型的精确率、召回率和F1分数分别提升0.9、1.1和1.0个百分点,较好地抑制处理多数类别过拟合的问题,实验结果验证了所提算法的有效性。 展开更多
关键词 双防机制 空管危险源 文本分类 自适应合成过采样算法(adasyn) Stacking集成模型
在线阅读 下载PDF
改进ADASYN-SDA的入侵检测模型研究 被引量:8
3
作者 陈虹 赵建智 +2 位作者 肖成龙 陈建虎 肖越 《计算机工程与应用》 CSCD 北大核心 2020年第2期97-105,共9页
针对传统入侵检测模型在高维数据且数据不均衡环境下检测性能较差的问题,提出了一种自适应过采样算法(ADASYN)与改进堆叠式降噪自编码器(SDA)结合的入侵检测模型。使用ADASYN算法进行数据过采样处理。使用Adam优化算法,以及Dropout正则... 针对传统入侵检测模型在高维数据且数据不均衡环境下检测性能较差的问题,提出了一种自适应过采样算法(ADASYN)与改进堆叠式降噪自编码器(SDA)结合的入侵检测模型。使用ADASYN算法进行数据过采样处理。使用Adam优化算法,以及Dropout正则化对SDA深度学习模型进行改进,提取出低维数、高鲁棒性的集成特征。在softmax分类器中进行入侵检测识别。实验结果表明,ADASYN-SDA模型相较于SDA、AE-DNN和MSVM模型,在平均准确率、检测率和误判率上均有一定程度的提高。 展开更多
关键词 堆叠式降噪自编码器(SDA) 自适应过采样算法(adasyn) 深度学习 入侵检测
在线阅读 下载PDF
面向不平衡数据分类的复合SVM算法研究 被引量:24
4
作者 刘东启 陈志坚 +1 位作者 徐银 李飞腾 《计算机应用研究》 CSCD 北大核心 2018年第4期1023-1027,共5页
为了改善传统支持向量机(SVM)对不平衡数据的分类效果,解决分类器对少类样本分类效果较差的问题,提出了一种复合SVM算法。该算法首先通过自适应合成采样(ADASYN)算法与不同错误代价(DEC)算法的结合,改善不平衡数据对超平面造成的偏移;... 为了改善传统支持向量机(SVM)对不平衡数据的分类效果,解决分类器对少类样本分类效果较差的问题,提出了一种复合SVM算法。该算法首先通过自适应合成采样(ADASYN)算法与不同错误代价(DEC)算法的结合,改善不平衡数据对超平面造成的偏移;然后引入一种新的修正算法对预测模型进行修正,提高预测模型对于不同数据特性的适应性。选择UCI数据库中的七组现实世界的不平衡数据集进行测试,实验表明在各个数据集上复合SVM算法性能均优于现有算法或与现有算法相当,分类性能平均提高了2.0%~20.9%,证明了该算法的有效性和鲁棒性。 展开更多
关键词 不平衡数据 支持向量机 自适应合成采样 不同错误代价 修正算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部