期刊文献+
共找到872篇文章
< 1 2 44 >
每页显示 20 50 100
自适应变分模态分解算法在高温高压水空化特性分析中的应用
1
作者 许博 胡鸿飞 王海军 《西安交通大学学报》 EI CAS 北大核心 2025年第1期56-67,共12页
针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法... 针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法、遗传算法、功率谱熵和相对能量等技术,自适应地确定变分模态分解算法中的超参数并有效去除信号中的噪声成分,提高了空化特征的提取精度。结果表明:AVMD算法能够精确捕捉到高温高压水流经孔板时空化现象的发生和发展,识别空化起始点、转捩点以及空化强度的变化;当高温高压水流经孔板后,压力脉动的无量纲频率在0.04~0.35、压力脉动的无量纲幅值在0.014~0.067时,空化现象开始出现;随着空化强度增加,管内压力脉动幅值和频率整体呈增大趋势;空化起始转捩点及空化严重转捩点与入口压力和工质入口过冷度密切相关。AVMD算法能够有效提高空化特性分析的精度,尤其是在复杂流动条件下的空化预测,为压水堆核电站冷却剂系统和高压蒸汽系统的稳定运行提供理论依据和参考。 展开更多
关键词 高温高压水 空化特性 自适应模态分解 孔板
在线阅读 下载PDF
基于变分模态分解的自适应交叉融合模型及其在月径流预测中的应用
2
作者 孙瑜辉 王庆杰 岳春芳 《水电能源科学》 北大核心 2025年第3期1-6,共6页
基于“分解—集成”策略的径流预测模型是现有研究中提高预测精度的主流方式之一。分解—集成建模方式主要有后验试验(HE)、预测试验(FE)和自适应预测试验(AFE)3种方式,已有研究主要聚焦于HE的改进,忽视了各建模方式的实用性研究。基于... 基于“分解—集成”策略的径流预测模型是现有研究中提高预测精度的主流方式之一。分解—集成建模方式主要有后验试验(HE)、预测试验(FE)和自适应预测试验(AFE)3种方式,已有研究主要聚焦于HE的改进,忽视了各建模方式的实用性研究。基于此,在梳理各类建模方式特性的基础上,以天山山系中两条典型的内陆河为例,选用BP神经网络(BP)、支持向量机(SVM)和随机森林(RF)为基准预测模型,基于变分模态分解(VMD)和互补集合经验模态分解(CEEMD)分别构建多种分解—集成预测模型,并探索了AFE与基准模型交叉融合后的预测能力。仿真结果表明,HE建立时提前使用了测试数据信息,与预测实际不符;FE在测试数据分解时受端点效应影响严重,预测精度极低;AEF符合逐时段观测—滚动分解—实时建模预测的实际,基于VMD和CEEMD的AFE模型对径流极大值的预测精度较高。在AFE类模型中,VMD的适应性更强,可实现流域汛期月径流的高精度预报。基于VMD分解的自适应交叉融合模型能够取得与HE模型相当甚至更高的预测精度,对径流预测精度的提高具有实际意义。 展开更多
关键词 径流预测 端点效应 模态分解 后验试验 预测试验 自适应预测试验
在线阅读 下载PDF
基于参数优化变分模态分解的信号降噪方法
3
作者 何玉洁 李新娥 贺俊 《现代电子技术》 北大核心 2025年第2期70-76,共7页
针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与... 针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与惩罚因子α;对含噪心电信号进行分解,得到k个本征模态函数(IMF)分量,同时采用相关系数法进行有效模态和含噪模态识别;对噪声主导的模态分量采用小波阈值降噪,并重构信号主导模态与降噪后模态。对仿真信号与含真实肌电干扰的心电信号进行降噪处理,实验结果表明,所提方法去噪效果优于小波阈值去噪法、EMD法、EMD-小波阈值去噪法,真实含噪的心电信号经该方法去噪后自相关系数可达0.91以上。 展开更多
关键词 模态分解 信号降噪 参数优化 改进白鲸优化算法 心电信号 IMF 小波阈值降噪 肌电干扰
在线阅读 下载PDF
基于射流瞬态流速变分模态分解法的纬纱波动幅度预测
4
作者 沈敏 欧阳灿 +4 位作者 熊小双 王真 杨学正 吕永法 余联庆 《纺织学报》 北大核心 2025年第1期187-196,共10页
为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)... 为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)方法数值模拟了圆锥形、圆弧形及圆柱形入口辅助喷嘴射流的瞬态流场分布,监测了辅助喷嘴射流在势核与势尾区域瞬态速度信号;继而,通过VMD方法,得到监测点速度的本征模态分量,讨论了各本征模态信号波动的方差,最后通过双向流固耦合法得到纬纱的径向偏移来验证预测的准确性。结果发现:3种辅助喷嘴势核与势尾处主模态IMF1速度幅值稳定,为辅助喷嘴的主速度模态;次模态IMF2波动大且与纬纱径向偏移具有同步性,可用于预测纬纱波动;第3模态IMF3为高频振荡信号,可视为流场高频噪声信号去除。 展开更多
关键词 喷气织机 辅助喷嘴射流 瞬态流场 大涡模拟 模态分解 纬纱波动
在线阅读 下载PDF
采用变分模态分解与领域自适应的表面肌电信号手势识别 被引量:1
5
作者 姜海燕 许先静 +1 位作者 钟凌珺 李竹韵 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期75-87,共13页
针对传统机器学习在表面肌电信号手势识别领域的适应性和准确性不足,以及新用户因个体生理和行为差异在已有模型上表现不佳的问题,提出一种利用卷积神经网络模型并有效克服肌电数据分布差异的算法,用于提升手势识别的性能。首先对肌电... 针对传统机器学习在表面肌电信号手势识别领域的适应性和准确性不足,以及新用户因个体生理和行为差异在已有模型上表现不佳的问题,提出一种利用卷积神经网络模型并有效克服肌电数据分布差异的算法,用于提升手势识别的性能。首先对肌电信号进行变分模态分解,构建易于识别的表面肌电图像,并提出了一种卷积神经网络模型进行手势识别,提升用户相关的肌电信号手势识别准确率;同时利用迁移学习中的领域自适应和模型微调技术,提升用户无关的肌电信号手势识别准确率,并将所提算法在NinaPro DB1肌电数据集中进行了3分类、4分类、5分类和12分类共4组评估验证。结果表明:在4组评估验证中,用户相关的肌电信号手势识别平均准确率分别达到了99.28%、99.30%、98.39%和93.40%,用户无关的肌电信号手势识别平均准确率分别达到了94.05%、92.60%、88.38%和70.03%,表明本文提出的算法在表面肌电信号手势识别中具有良好的效果,为实现人机交互中的普适性的肌电设备开发提供了一种可行的方案。 展开更多
关键词 领域自适应 卷积神经网络 手势识别 模态分解 表面肌电信号
在线阅读 下载PDF
基于变分模态分解和分段多项式截断奇异值分解的桥梁影响线识别
6
作者 万桂军 黎剑安 冯东明 《浙江大学学报(工学版)》 北大核心 2025年第3期460-468,共9页
为了提高桥梁影响线的识别精度,提出基于变分模态分解(VMD)和分段多项式截断奇异值分解(PPTS-VD)的桥梁影响线识别方法.该方法应用VMD技术将桥梁位移分解成若干固有模态函数(IMF),通过融合多个低阶IMF提取桥梁响应的准静态成分,利用PPT... 为了提高桥梁影响线的识别精度,提出基于变分模态分解(VMD)和分段多项式截断奇异值分解(PPTS-VD)的桥梁影响线识别方法.该方法应用VMD技术将桥梁位移分解成若干固有模态函数(IMF),通过融合多个低阶IMF提取桥梁响应的准静态成分,利用PPTSVD从准静态成分中识别桥梁影响线.为了验证所提方法的准确性,建立三跨连续梁桥和四轴车数值仿真模型,模拟不同车速、路面不平度和噪声水平,并针对500组数值仿真结果进行测试.将所提方法与经典方法进行对比,并全面讨论车速、路面不平度和噪声对识别结果的影响.进行验证试验,测试实验室环境下所提方法的准确性和适用性.研究结果表明,所提方法能从桥梁响应中准确识别出桥梁影响线,最大误差仅为1.38%;相比传统方法,所提方法显著减少了车速、路面不平度和噪声对识别结果的干扰,提高了识别的鲁棒性和精度. 展开更多
关键词 桥梁健康监测 桥梁动力 车桥耦合系统 影响线识别 模态分解
在线阅读 下载PDF
基于传声器阵列与变分模态分解的管道泄漏定位技术
7
作者 夏丹 刁生林 《舰船科学技术》 北大核心 2025年第6期55-61,共7页
确保船舶管道系统安全运行是一项关键任务,特别是现代的大型运输船舶,这些船舶负责输送燃油、压缩空气等化学性质活跃的物质,一旦船舶管道发生泄漏,不仅会导致资源浪费,甚至可能引发安全事故。为了实现利用传感器阵列对船舶管道泄漏进... 确保船舶管道系统安全运行是一项关键任务,特别是现代的大型运输船舶,这些船舶负责输送燃油、压缩空气等化学性质活跃的物质,一旦船舶管道发生泄漏,不仅会导致资源浪费,甚至可能引发安全事故。为了实现利用传感器阵列对船舶管道泄漏进行准确的定位,本文提出一种结合变分模态分解(VMD)和广义互相关(GCC)的泄漏定位方法。考虑到船舶在海上航行时复杂的环境噪声,研究首先应用VMD对从各个传感器获得的泄漏信号进行多重分解,随后基于互相关系数自适应地选取主要的固有模态函数(IMF)分量,并消除噪声成分。此外,本文考虑到广义互相关权函数的特性,进一步提出一种改进的权函数,以纳入信噪比对时延估计精度的影响。以五元十字形传感器阵列为例,本文详细阐述了声源定位的计算方法。通过实施管道泄漏实验,研究结果验证了所提方法在不同工况下都能实现鲁棒且精确的时延估计,从而准确地定位管道泄漏。 展开更多
关键词 传声器阵列 时延估计 模态分解 管道泄漏定位
在线阅读 下载PDF
基于参数优化变分模态分解和马田系统的工业缝纫机故障诊断方法
8
作者 周中华 刘祖斌 《高技术通讯》 北大核心 2025年第1期73-84,共12页
针对工业缝纫机出厂质检的人耳听音传统方式准确率不高、耗时耗力的问题,提出了一种基于参数优化变分模态分解(variational mode decomposition,VMD)和马田系统(Mahalanobis-Taguchi system,MTS)的工业缝纫机故障诊断方法。首先,通过樽... 针对工业缝纫机出厂质检的人耳听音传统方式准确率不高、耗时耗力的问题,提出了一种基于参数优化变分模态分解(variational mode decomposition,VMD)和马田系统(Mahalanobis-Taguchi system,MTS)的工业缝纫机故障诊断方法。首先,通过樽海鞘群算法(salp swarm algorithm,SSA)对变分模态分解的相关参数进行迭代寻优,并利用获得最优参数的VMD对工业缝纫机声信号进行分解得到不同中心频率的固有模态函数(intrinsic mode function,IMF);然后,分别对IMF分量进行多域特征融合,并且采用正常样本构建了MTS的基准空间,进一步利用了少量故障样本来验证和优化基准空间;最后,结合马氏距离的阈值实现了准确的故障识别分类。通过仿真信号的对比分析,证明了SSA-VMD算法分解信号的可行性和优越性;实验数据和实测数据的研究结果表明了所提出的故障诊断方法具有一定的实际应用价值。 展开更多
关键词 工业缝纫机 故障诊断 模态分解 马田系统 多域特征融合
在线阅读 下载PDF
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
9
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
10
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 模态分解(VMD) 整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于自适应变分模态分解的齿轮箱故障诊断 被引量:1
11
作者 谢锋云 汪淦 +2 位作者 赏鉴栋 樊秋阳 朱海燕 《推进技术》 EI CAS CSCD 北大核心 2024年第9期218-227,共10页
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值... 针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强。利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量。使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别。通过实验验证,该模型10次测试的平均准确率可达95.04%。与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法。 展开更多
关键词 航空齿轮箱 故障诊断 信号降噪 自适应模态分解 粒子群算法 核极限学习机
在线阅读 下载PDF
基于波浪激励响应自适应变分模态分解的高桩码头桩基损伤识别
12
作者 王泊淳 王启明 +1 位作者 朱瑞虎 李成明 《振动与冲击》 EI CSCD 北大核心 2024年第21期147-155,221,共10页
波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱... 波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱复杂,分解所需的模态数和罚因子会严重影响分解结果。为解决该问题,提出了一种自适应变分模态分解方法(improved adaptive variational mode decomposition,IAVMD),该方法通过罚权系数自适应调整各频率分量的罚因子,并通过分解结果的信号完整度来确定最佳模态数。进一步通过波浪激励下的高桩码头模型试验对IAVMD的有效性、适用性进行了验证。结果表明,该方法能够准确分离出动力响应损伤特征子信号,并根据能量因子确定损伤位置和大小。 展开更多
关键词 波浪激励 损伤检测 信号重构 自适应模态分解(Iavmd)
在线阅读 下载PDF
基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别
13
作者 袁平平 满镇 +1 位作者 赵周杰 任伟新 《振动与冲击》 EI CSCD 北大核心 2024年第20期18-25,共8页
为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode d... 为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode decomposition,DDAVNCMD)的方法。通过模态能量占比确定响应信号的模态个数,同时采用导数归一化算法初步估算模态分量的初始频率,并添加迭代时变滤波器来降低噪声的影响,在此基础上再对响应信号进行VNCMD。通过单分量和多分量解析信号及拉索结构试验对所提方法进行验证。研究结果表明,基于DDAVNCMD的瞬时频率识别方法具有较好的准确性和抗噪性。 展开更多
关键词 瞬时频率 非线性chirp模态分解(VNCMD) 导数归一化 迭代时滤波器 数据驱动自适应非线性chirp模态分解(DDAVNCMD)
在线阅读 下载PDF
侵彻过载信号自适应变分模态分解时频分析方法
14
作者 谢雨岑 郜王鑫 +2 位作者 邵志豪 房安琪 张珂 《探测与控制学报》 CSCD 北大核心 2024年第4期69-78,共10页
传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信... 传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信号频率成分复杂且具有的非平稳性、随机性特点,该方法以模态的混叠效应和稀疏性作为信号的分解约束,采用非支配排序遗传算法(NSGA-II)搜索获取变分模态分解算法的分解个数和二次惩罚因子,再基于参数优化的变分模型,确定各模态函数的中心频率和带宽,完成过载信号各频率成分的自适应分解。通过对实测侵彻过载信号分析可见,相比于通用经验模态分解算法,该方法可以有效抑制模态混叠现象,且在时域和频域上均具有更好的分辨率,能为引信系统的信号处理、仿真模型验证、结构设计提供有效信息支撑。 展开更多
关键词 侵彻过载信号 时频 模态混叠 自适应优化模态分解
在线阅读 下载PDF
自适应变分模态分解在矿山变形监测数据去噪的应用
15
作者 熊鑫 游宇垠 《世界有色金属》 2024年第20期41-44,共4页
为了消除变形数据中包含的白噪声,提出了一种基于自适应变分模式分解的噪声消除模型。针对变分模式分解中关键参数选择不确定的问题,提出了基于相邻分解层数的最优分解评价值,指导最优分解层数,利用互信息熵判定噪声临界值。在确定模型... 为了消除变形数据中包含的白噪声,提出了一种基于自适应变分模式分解的噪声消除模型。针对变分模式分解中关键参数选择不确定的问题,提出了基于相邻分解层数的最优分解评价值,指导最优分解层数,利用互信息熵判定噪声临界值。在确定模型的参数之后,去除所确定的噪声分量,并且重组剩余分量以获得噪声去除后的变形序列。对实际沉降数据进行去噪,通过实验比较,自适应变分模式分解的去噪评价指标均优于小波去噪、经验模态分解和完全集合经验模态分解。 展开更多
关键词 形数据去噪 模态分解 最优分解评估 互信息熵
在线阅读 下载PDF
改进变分模态分解与多特征的通信辐射源个体识别方法 被引量:1
16
作者 刘高辉 席宏恩 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期4044-4052,共9页
针对通信辐射源指纹特征难以提取和单一特征识别率不高的问题,并考虑到通信辐射源细微特征的非线性、非平稳特点,该文提出了一种基于改进变分模态分解和多特征的通信辐射源个体识别方法。首先,为了获得变分模态分解的分解层数和惩罚因... 针对通信辐射源指纹特征难以提取和单一特征识别率不高的问题,并考虑到通信辐射源细微特征的非线性、非平稳特点,该文提出了一种基于改进变分模态分解和多特征的通信辐射源个体识别方法。首先,为了获得变分模态分解的分解层数和惩罚因子的最优组合,采用鲸鱼优化算法对通信辐射源符号波形信号的变分模态分解方法进行了改进,该方法以序列复杂度为停止准则,使每个符号波形信号能够自适应地分解出包含非线性指纹特征的高频信号分量和数据信息的低频分量;然后,根据相关阈值选取能够最佳表征辐射源非线性特征的高频信号分量层数,分别对其提取模糊熵、排列熵、Higuchi维数以及Katz维数并组成多域联合特征向量;最后,通过卷积神经网络实现通信辐射源个体识别分类,利用ORACLE公开数据集进行实验。实验结果表明:该方法有较高的识别精度且具有良好的抗噪声性能。 展开更多
关键词 通信辐射源个体识别 模态分解 非线性指纹特征 卷积神经网络
在线阅读 下载PDF
基于变分模态分解的采空区“三带”微震信号能量衰减规律 被引量:1
17
作者 贾宝新 郑克楠 周琳力 《岩土力学》 EI CAS CSCD 北大核心 2024年第4期991-1002,共12页
为探明微震信号能量在采空区“三带”结构中的衰减规律,拟开展采空区覆岩相似模型试验,采集人工激发微震波经由采空区结构传播的微震信号,通过变分模态分解(variational mode decomposition,VMD)处理微震信号,获取各频率下模态分量。针... 为探明微震信号能量在采空区“三带”结构中的衰减规律,拟开展采空区覆岩相似模型试验,采集人工激发微震波经由采空区结构传播的微震信号,通过变分模态分解(variational mode decomposition,VMD)处理微震信号,获取各频率下模态分量。针对采空区微震信号在VMD下各模态分量中心频率与能量之间的关系展开分析。根据中心频率法确定微震信号最佳模态数量,并计算微震信号欠分解状态、最佳分解状态、过分解状态下各分量能量;对各震源下信号最佳分解状态时各模态分量能量与中心频率分布关系进行拟合,分析在“三带”结构中,微震信号不同传播状态下各结构层对信号能量影响作用。研究结果表明:(1)在VMD过程中,人工激发震动信号有效模态数量在6~11范围内,微震信号能量随模态数量变化明显。(2)采用幂函数可实现对微震信号模态能量与频率关系的拟合,且拟合状态良好(决定系数大于0.9),其中低频模态分量包含能量占信号总能量近50%;采用高斯函数可以拟合震源各分量能量在频域上的分布表现,拟合状态较好,且表现出高斯单峰特征。(3)微震信号穿越采空区“三带”结构,微震信号能量随震源位置与传感器距离增加而减小,同时信号能量随震源位置到达传感器穿越岩层数量增加而减小,信号能量在经由垮落带时,能量变化明显,相较于裂隙带和弯曲下沉带,垮落带对信号能量衰减作用明显。 展开更多
关键词 模态分解(VMD) 微震信号 信号频率特征 信号能量衰减 采空区“三带”结构
在线阅读 下载PDF
混凝土缺陷信号变分模态分解与超声成像方法
18
作者 张奇 韩庆邦 +3 位作者 孙刘家 靳琪琳 王溢秋 刘志鹏 《应用声学》 CSCD 北大核心 2024年第4期829-835,共7页
混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而... 混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而提高成像算法对混凝土缺陷间散射波互干扰的鲁棒性。通过设置对比试验,研究了不同缺陷混凝土结构中该信号处理方式对于成像结果的影响。试验结果表明,该方法对于弱散射及散射干扰具有更好的鲁棒性,相比基于原始数据的成像方法能够更好地还原混凝土内部结构。 展开更多
关键词 混凝土 超声检测 模态分解 本征模态函数
在线阅读 下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别
19
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化模态分解(IVMD) 时域衰减速度 声振法
在线阅读 下载PDF
一种热工监测参数的模态双分解降噪方法
20
作者 卓越 倪何 +1 位作者 肖鹏飞 何超 《哈尔滨工业大学学报》 北大核心 2025年第4期162-170,共9页
针对热工监测参数普遍存在异常值、噪声和不规则扰动的问题,从提高监控系统调节控制的精确性和系统运行管理水平的目的出发,提出了一种基于中值模态分解(MREMD)和变分模态分解(VMD)的热工监测参数降噪方法,旨在尽可能保留原始数据有效... 针对热工监测参数普遍存在异常值、噪声和不规则扰动的问题,从提高监控系统调节控制的精确性和系统运行管理水平的目的出发,提出了一种基于中值模态分解(MREMD)和变分模态分解(VMD)的热工监测参数降噪方法,旨在尽可能保留原始数据有效信息的基础上,降低监控参数的噪声和扰动。首先,对监控参数进行MREMD分解,得到若干本征模态函数(IMF)。其次,通过引入混沌时间序列分析的排列熵筛选出包含噪声的IMF分量重构为原始数据的噪声部分,然后对噪声部分进行VMD分解,以分解所得本征模态函数的最优包络熵为适应度函数,使用北方苍鹰算法(NGO)对VMD分解参数进行寻优,在寻优范围内得到的最低包络熵本征模态函数即噪声部分所含的有效信息。最后,将此部分与MREMD分解所得包含趋势信息的低频IMF分量和残余分量求和重构,得到降噪后的监测信号。结果表明,通过算例验证,本研究提出的模态双分解降噪方法,与主流的各类型小波阈值降噪方法和移动均值滤波法相比,具有更高的信噪比和更低的信息熵及功率谱熵。 展开更多
关键词 数据降噪 中值模态分解(MREMD) C-C算法 信息熵 模态分解(VMD)
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部