期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
自适应变分模态分解算法在高温高压水空化特性分析中的应用 被引量:2
1
作者 许博 胡鸿飞 王海军 《西安交通大学学报》 EI CAS 北大核心 2025年第1期56-67,共12页
针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法... 针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法、遗传算法、功率谱熵和相对能量等技术,自适应地确定变分模态分解算法中的超参数并有效去除信号中的噪声成分,提高了空化特征的提取精度。结果表明:AVMD算法能够精确捕捉到高温高压水流经孔板时空化现象的发生和发展,识别空化起始点、转捩点以及空化强度的变化;当高温高压水流经孔板后,压力脉动的无量纲频率在0.04~0.35、压力脉动的无量纲幅值在0.014~0.067时,空化现象开始出现;随着空化强度增加,管内压力脉动幅值和频率整体呈增大趋势;空化起始转捩点及空化严重转捩点与入口压力和工质入口过冷度密切相关。AVMD算法能够有效提高空化特性分析的精度,尤其是在复杂流动条件下的空化预测,为压水堆核电站冷却剂系统和高压蒸汽系统的稳定运行提供理论依据和参考。 展开更多
关键词 高温高压水 空化特性 自适应变分模态分解 孔板
在线阅读 下载PDF
基于自适应变分模态分解的齿轮箱故障诊断 被引量:1
2
作者 谢锋云 汪淦 +2 位作者 赏鉴栋 樊秋阳 朱海燕 《推进技术》 EI CAS CSCD 北大核心 2024年第9期218-227,共10页
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值... 针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强。利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量。使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别。通过实验验证,该模型10次测试的平均准确率可达95.04%。与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法。 展开更多
关键词 航空齿轮箱 故障诊断 信号降噪 自适应变分模态分解 粒子群算法 核极限学习机
在线阅读 下载PDF
基于波浪激励响应自适应变分模态分解的高桩码头桩基损伤识别 被引量:1
3
作者 王泊淳 王启明 +1 位作者 朱瑞虎 李成明 《振动与冲击》 EI CSCD 北大核心 2024年第21期147-155,221,共10页
波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱... 波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱复杂,分解所需的模态数和罚因子会严重影响分解结果。为解决该问题,提出了一种自适应变分模态分解方法(improved adaptive variational mode decomposition,IAVMD),该方法通过罚权系数自适应调整各频率分量的罚因子,并通过分解结果的信号完整度来确定最佳模态数。进一步通过波浪激励下的高桩码头模型试验对IAVMD的有效性、适用性进行了验证。结果表明,该方法能够准确分离出动力响应损伤特征子信号,并根据能量因子确定损伤位置和大小。 展开更多
关键词 波浪激励 损伤检测 信号重构 自适应变分模态分解(IAVMD)
在线阅读 下载PDF
基于自适应变分模态分解的组合模型风电功率预测 被引量:1
4
作者 鹿凯 石开明 +3 位作者 贾欢 金勇杰 王旭 徐谱鑫 《电源学报》 CSCD 北大核心 2024年第2期283-289,共7页
风电机组出力的高波动与随机性,影响电力系统安全稳定运行与风电预测精度,针对此提出结合风电功率波动特性研究的风电功率预测方法。首先从时间与机组规模尺度分析风电功率波动特性,并指导选取合适的风电数据用于风电功率预测;然后建立... 风电机组出力的高波动与随机性,影响电力系统安全稳定运行与风电预测精度,针对此提出结合风电功率波动特性研究的风电功率预测方法。首先从时间与机组规模尺度分析风电功率波动特性,并指导选取合适的风电数据用于风电功率预测;然后建立基于最小二乘支持向量机的风电机组短期功率预测模型,采用自适应变分模态分解实现风电数据分频,并采用改进粒子群优化最小二乘支持向量机模型中影响回归预测的模型参数。实验结果表明,预测模型自适应性较强,通过预测误差评价指标,可证明预测方法的有效性。 展开更多
关键词 最小二乘支持向量机 风电功率预测 自适应变分模态分解 改进粒子群优化 频预测
在线阅读 下载PDF
侵彻过载信号自适应变分模态分解时频分析方法 被引量:1
5
作者 谢雨岑 郜王鑫 +2 位作者 邵志豪 房安琪 张珂 《探测与控制学报》 CSCD 北大核心 2024年第4期69-78,共10页
传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信... 传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信号频率成分复杂且具有的非平稳性、随机性特点,该方法以模态的混叠效应和稀疏性作为信号的分解约束,采用非支配排序遗传算法(NSGA-II)搜索获取变分模态分解算法的分解个数和二次惩罚因子,再基于参数优化的变分模型,确定各模态函数的中心频率和带宽,完成过载信号各频率成分的自适应分解。通过对实测侵彻过载信号分析可见,相比于通用经验模态分解算法,该方法可以有效抑制模态混叠现象,且在时域和频域上均具有更好的分辨率,能为引信系统的信号处理、仿真模型验证、结构设计提供有效信息支撑。 展开更多
关键词 侵彻过载信号 时频 模态混叠 自适应优化模态分解
在线阅读 下载PDF
基于自适应变分模态分解的电力系统机电振荡特征提取 被引量:26
6
作者 王丽馨 蔡国伟 +1 位作者 杨德友 孙正龙 《电网技术》 EI CSCD 北大核心 2019年第4期1387-1395,共9页
针对电力系统非线性、非平稳机电振荡信号特征参数提取困难的问题,提出了一种基于自适应变分模态分解(adaptive variational mode decomposition,AVMD)和Hilbert变换的电力系统机电振荡特征参数提取方法。自适应变分模态分解方法是一种... 针对电力系统非线性、非平稳机电振荡信号特征参数提取困难的问题,提出了一种基于自适应变分模态分解(adaptive variational mode decomposition,AVMD)和Hilbert变换的电力系统机电振荡特征参数提取方法。自适应变分模态分解方法是一种非递归式算法,通过约束变分模型的构建及求解,从而获取频率成分固定的振荡分量,且抗噪性能较好。首先根据窗口傅立叶变换频谱分布确定变分模态分解算法的分解模态数,然后利用自适应变分模态分解算法获取各有限带宽固有模态分量,最后通过Hilbert变换提取振荡特征参数。仿真分析及实测数据计算结果表明了所提方法的可行性及有效性。 展开更多
关键词 机电振荡 自适应变分模态分解 有限带宽固有模态 HILBERT
在线阅读 下载PDF
基于改进自适应变分模态分解的滚动轴承微弱故障诊断 被引量:84
7
作者 谷然 陈捷 +2 位作者 洪荣晶 潘裕斌 李媛媛 《振动与冲击》 EI CSCD 北大核心 2020年第8期1-7,22,共8页
滚动轴承早期故障信息微弱,且混有大量背景噪声,难以提取其故障特征。提出了一种改进的自适应变分模态分解(AVMD)与Teager能量谱的微弱故障诊断方法。将最小平均包络熵(MMEE)作为目标函数,自动搜寻影响参数最佳值,确保变分模态分解(VMD... 滚动轴承早期故障信息微弱,且混有大量背景噪声,难以提取其故障特征。提出了一种改进的自适应变分模态分解(AVMD)与Teager能量谱的微弱故障诊断方法。将最小平均包络熵(MMEE)作为目标函数,自动搜寻影响参数最佳值,确保变分模态分解(VMD)实现最优分解,并提出加权峭度指标(WK)用于选择有效模态分量进行信号重构,对重构信号进行Teager能量谱分析,从而识别故障特征频率。对轴承微弱故障振动信号的研究表明,所提方法改进了传统VMD算法分解精度受参数影响较大,导致信号出现过分解或欠分解的问题;与集合经验模态分解和局部均值分解算法相比所提方法具有更强的噪声鲁棒性和故障信息提取能力。 展开更多
关键词 自适应变分模态分解(AVMD) 最小平均包络熵(MMEE) 加权峭度指标(WK) Teager能量算子(TEO) 微弱故障诊断
在线阅读 下载PDF
基于自适应变分模态分解和包络谐噪比的滚动轴承早期退化检测 被引量:18
8
作者 吕明珠 刘世勋 +1 位作者 苏晓明 陈长征 《振动与冲击》 EI CSCD 北大核心 2021年第13期271-280,共10页
针对滚动轴承微弱故障特征易受噪声干扰且退化起始点难以确定的问题,提出了一种基于自适应变分模态分解和包络谐噪比的滚动轴承早期退化检测方法。首先,采用灰狼优化算法自适应地选择变分模态分解的分解层数和二次惩罚因子,以最小平均... 针对滚动轴承微弱故障特征易受噪声干扰且退化起始点难以确定的问题,提出了一种基于自适应变分模态分解和包络谐噪比的滚动轴承早期退化检测方法。首先,采用灰狼优化算法自适应地选择变分模态分解的分解层数和二次惩罚因子,以最小平均包络熵为目标函数获得最佳参数组合。其次,通过引入有效加权稀疏峭度指数实现了有效模态分量和噪声模态分量的分离,使重构后的信号滤除了干扰而保留了故障信息。最后,计算了重构信号的包络谐噪比,利用其对周期性故障冲击的敏感性实现了滚动轴承早期退化起始点的检测。实验验证结果表明,该方法不仅解决了轴承运行初期的误报警问题,还能较早地识别出轴承退化过程的起始点,兼具鲁棒性和敏感性,为滚动轴承的早期故障诊断和剩余寿命预测提供参考依据。 展开更多
关键词 自适应变分模态分解(AVMD) 包络谐噪比(EHNR) 滚动轴承 早期退化
在线阅读 下载PDF
采用自适应变分模态分解的混合储能平滑光伏出力波动控制策略 被引量:38
9
作者 颜晨煜 樊艳芳 姚波 《高电压技术》 EI CAS CSCD 北大核心 2019年第6期1898-1906,共9页
光伏出力的随机波动性对电网稳定运行产生一定影响,针对这一问题,提出了基于自适应变分模态分解的混合储能系统(hybrid energy storage system,HESS)平滑光伏出力波动方法。首先,针对典型光伏出力场景,结合光伏功率波动标准及储能元件特... 光伏出力的随机波动性对电网稳定运行产生一定影响,针对这一问题,提出了基于自适应变分模态分解的混合储能系统(hybrid energy storage system,HESS)平滑光伏出力波动方法。首先,针对典型光伏出力场景,结合光伏功率波动标准及储能元件特性,对光伏原始功率自适应的进行变分模态分解,从而实现功率初级分配;其次,在储能系统内部,监测超级电容荷电状态,通过模糊控制对储能元件初级功率进行二次修正。研究结果表明:所提控制策略能够自适应地实现光伏出力的最佳分解及合理分配,在有效减少光伏出力波动的同时避免了储能元件出现冗余容量;基于模糊控制的初级功率优化修正,使储能元件在荷电状态(state of charge,SOC)安全范围内工作,极大延长了储能元件的经济寿命。研究结果为变分模态分解算法的广泛应用提供了坚实基础,同时为实现大规模光伏电站的可靠并网及进一步开展光伏功率在线控制提供了一定的理论依据。 展开更多
关键词 光伏出力 自适应变分模态分解 平抑功率波动 混合储能系统 模糊控制 荷电状态
在线阅读 下载PDF
基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别
10
作者 袁平平 满镇 +1 位作者 赵周杰 任伟新 《振动与冲击》 EI CSCD 北大核心 2024年第20期18-25,共8页
为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode d... 为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode decomposition,DDAVNCMD)的方法。通过模态能量占比确定响应信号的模态个数,同时采用导数归一化算法初步估算模态分量的初始频率,并添加迭代时变滤波器来降低噪声的影响,在此基础上再对响应信号进行VNCMD。通过单分量和多分量解析信号及拉索结构试验对所提方法进行验证。研究结果表明,基于DDAVNCMD的瞬时频率识别方法具有较好的准确性和抗噪性。 展开更多
关键词 瞬时频率 非线性chirp模态分解(VNCMD) 导数归一化 迭代时滤波器 数据驱动自适应非线性chirp模态分解(DDAVNCMD)
在线阅读 下载PDF
自适应模态总数变分模态分解方法及其性能评估 被引量:5
11
作者 王锦鸿 李鸿光 +1 位作者 张文笛 陈亚农 《振动与冲击》 EI CSCD 北大核心 2023年第10期251-262,共12页
VMD方法目前广泛应用于转子系统故障诊断以及二维图像分解等领域,但传统VMD算法需要预先给出模态总数,且VMD对信号能量较弱的非中心频段存在重构效果差,含噪声下提取能力差,容易遗漏故障特征等问题;基于上述问题对VMD修改了信号的约束准... VMD方法目前广泛应用于转子系统故障诊断以及二维图像分解等领域,但传统VMD算法需要预先给出模态总数,且VMD对信号能量较弱的非中心频段存在重构效果差,含噪声下提取能力差,容易遗漏故障特征等问题;基于上述问题对VMD修改了信号的约束准则,并引入信号未处理以及残差信号的多元约束目标,使模态总数可通过收敛得到;对模拟内圈轴承信号和试验信号的时频域重构分析以及分解模态信号的分析,对比三种算法的在非中心频段的重构效果以及特征提取能力的优劣。 展开更多
关键词 自适应变分模态分解 重构与特征提取 故障诊断
在线阅读 下载PDF
基于AVMD和排列熵的t分布邻域嵌入流形HHO-SVM模拟电路故障诊断方法 被引量:4
12
作者 陈晓梅 王行健 +1 位作者 蔡烨 周博 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期233-240,共8页
随着信息大数据时代的到来,对于电子系统的依赖程度越来越高,因此模拟电路的故障诊断的准确度要求与日俱增。而模拟电路故障诊断困难,是电子系统诊断维修的瓶颈。本文提出基于自适应变分模态分解(AVMD)和排列熵(PE)的t分布邻域嵌入流形... 随着信息大数据时代的到来,对于电子系统的依赖程度越来越高,因此模拟电路的故障诊断的准确度要求与日俱增。而模拟电路故障诊断困难,是电子系统诊断维修的瓶颈。本文提出基于自适应变分模态分解(AVMD)和排列熵(PE)的t分布邻域嵌入流形哈里斯鹰优化支持向量机(HHO-SVM)模拟电路故障诊断方法。首先,利用AVMD对待测电路的观测信号进行自适应变分模态分解,得到多组IMF信号,不仅可以克服噪声干扰,而且可以来自适应地确定分解模式的数量,进一步提升分解精度;再对IMF计算排列熵,以充分体现IMF不同时段局部特征,二者相结合构建故障特征向量。并在此基础上,采用t分布式随机邻域嵌入(t-SNE)实现特征空间的流形学习和降维,构建具有良好区分度且保留原来的局部结构特征的故障特征向量;最后依靠哈里斯鹰优化支持向量机(HHO-SVM),使其具有良好的分类准确度,从而最终完成电路故障诊断。通过仿真验证,结果显示,本文方法故障诊断正确率可达100%,效果良好。 展开更多
关键词 自适应变分模态分解AVMD t布邻域嵌入 故障诊断 哈里斯鹰优化支持向量机
在线阅读 下载PDF
基于自适应VMD和时-频分段能量熵特征的过电压信号识别 被引量:14
13
作者 杨冬锋 陈盛开 +2 位作者 刘晓军 高磊 王永 《电网技术》 EI CSCD 北大核心 2019年第12期4597-4604,共8页
针对目前电网对过电压信号识别研究不足的问题,提出一种基于自适应变分模态分解(variationalmode decomposition,VMD)和时-频分段能量熵特征的过电压信号识别方法。首先,采用自适应VMD方法将过电压信号分解为一系列模态分量(band-limite... 针对目前电网对过电压信号识别研究不足的问题,提出一种基于自适应变分模态分解(variationalmode decomposition,VMD)和时-频分段能量熵特征的过电压信号识别方法。首先,采用自适应VMD方法将过电压信号分解为一系列模态分量(band-limitedintrinsicmodefunctions,BLIMFs),并通过自适应模态统一选择的方法,选择待提取特征模态;然后,对各层BLIMF时间轴等长分段,在此基础上提取时-频分段能量熵特征,并组合得特征向量;最后,通过LibSVM构建支持向量机(support vector machine,SVM)多分类器对过电压信号训练,完成识别。仿真结果表明,该方法解决了传统VMD不能自适应分解的问题,克服了传统能量熵对信号局部特征描述不清的缺陷,满足当下对过电压在线识别的工程需求。 展开更多
关键词 过电压 信号识别 自适应变分模态分解 时-频段能量熵 支持向量机
在线阅读 下载PDF
基于能量熵VMD最优分解与GRU循环神经网络的潮汐预测精度提升方法研究 被引量:12
14
作者 赵杰 解则晓 刘世萱 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第12期79-87,共9页
为进一步提升潮汐预测精度,提高预测模型的多适应性,针对低频潮汐分潮智能化自适应提取困难、动态化处理分潮信息能力弱、单一预测模型对潮汐整体预测的局限性等问题,提出了一种基于能量熵的自适应最优变分模态分解VMD与门控循环单元神... 为进一步提升潮汐预测精度,提高预测模型的多适应性,针对低频潮汐分潮智能化自适应提取困难、动态化处理分潮信息能力弱、单一预测模型对潮汐整体预测的局限性等问题,提出了一种基于能量熵的自适应最优变分模态分解VMD与门控循环单元神经网络GRU相结合的潮汐预测提升方法。首先,将潮汐数据归一化预处理,通过VMD对潮汐数据完成自适应变分模态分解,并根据不同分解层模态分量的能量熵判定最优分解层数,最后将最优分量标准化后经GRU单独预测合成,通过反归一化形成最终预测数据。经验证分析,在潮汐预测方面,GRU模型比LSTM、BiLSTM模型性能更优,均方根误差分别提升了53%和96.8%,而本文方法与单一GRU模型相比,均方根误差再次提升了81.3%,预测精度提升效果更加明显,对于潮汐分析与预测具有较高的推广应用价值。 展开更多
关键词 潮汐预测 自适应最优模态分解 能量熵 门控循环单元
在线阅读 下载PDF
基于自适应VMD和DD-cCycleGAN的滚动轴承剩余寿命预测 被引量:3
15
作者 于军 赵坤 +1 位作者 张帅 邓四二 《振动与冲击》 EI CSCD 北大核心 2024年第13期45-52,共8页
为准确预测强噪声干扰小样本情况下的滚动轴承剩余寿命(remaining useful life, RUL),提出一种基于自适应变分模态分解(variational mode decomposition, VMD)和双判别器条件循环一致对抗网络(double-discriminator conditional CycleGA... 为准确预测强噪声干扰小样本情况下的滚动轴承剩余寿命(remaining useful life, RUL),提出一种基于自适应变分模态分解(variational mode decomposition, VMD)和双判别器条件循环一致对抗网络(double-discriminator conditional CycleGAN, DD-cCycleGAN)的滚动轴承RUL预测方法。将黑猩猩优化算法(chimp optimization algorithm, ChOA)与VMD相结合,给出一种基于ChOA的自适应VMD算法,选取有效模态分量进行重构,降低强背景噪声的干扰;开发一种DD-cCycleGAN生成新样本,这些生成的新样本不但保留了源域的样本信息,还与目标域的样本相似;将训练样本的重构样本和生成的新样本作为输入,训练长短时记忆(long short-term memory, LSTM)网络,用训练后的LSTM网络预测测试样本中滚动轴承的RUL。通过采用XJTU-SY滚动轴承加速寿命试验数据集验证该方法的有效性,试验结果表明该方法具有较强的抗噪能力和较高的轴承RUL预测精度。 展开更多
关键词 滚动轴承 剩余寿命(RUL)预测 自适应变分模态分解(VMD) 双判别器条件循环一致对抗网络 黑猩猩优化算法(ChOA)
在线阅读 下载PDF
基于VMD-KSVD字典学习降噪的大坝变形预测
16
作者 柳磊 李登华 丁勇 《大地测量与地球动力学》 CSCD 北大核心 2024年第9期951-958,984,共9页
提出一种自适应变分模态分解和KSVD字典学习相结合的降噪算法。该方法对监测序列分解后的子序列进行降噪,同时考虑残差序列的特征,从而充分保留监测序列中的有效信息。以某大坝变形监测数据为例进行测试,结果表明,该方法能够较好地保留... 提出一种自适应变分模态分解和KSVD字典学习相结合的降噪算法。该方法对监测序列分解后的子序列进行降噪,同时考虑残差序列的特征,从而充分保留监测序列中的有效信息。以某大坝变形监测数据为例进行测试,结果表明,该方法能够较好地保留监测序列中的有效信息,相较于传统的降噪算法更适用于复杂情况下的大坝变形预测,能进一步提高预测模型的泛化能力。 展开更多
关键词 自适应变分模态分解 KSVD 字典学习 形预测 大坝安全监测
在线阅读 下载PDF
基于AVMD与Teager能量算子的风电机组故障诊断方法
17
作者 时培明 伊思颖 +2 位作者 张慧超 范雅斐 韩东颖 《振动.测试与诊断》 北大核心 2025年第2期390-397,418,共9页
为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decompositi... 为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decomposition,简称AVMD)算法的风电机组故障诊断方法。首先,将包络熵-峭度-互信息准则(envelope entropy,kurtosis and mutual information,简称EKM)作为黏菌算法(slime mold algorithm,简称SMA)的适应度函数来寻找最优解,并按照最优解对故障信号进行分解;其次,计算每个固有模态函数分量(inherent modal function,简称IMF)的峭度和与原信号的互信息,选择具有故障特征的分量进行重构;最后,通过Teager能量算子解调来识别风电机组故障特征频率。仿真信号和实际风电机组故障信号表明,所提方法能够找到故障频率及其倍频,验证了其在风电机组故障诊断领域中的有效性。 展开更多
关键词 自适应变分模态分解 黏菌算法 包络熵-峭度-互信息准则 TEAGER能量算子
在线阅读 下载PDF
基于AVMD和谱相关分析的风电机组轴承故障诊断 被引量:15
18
作者 齐咏生 白宇 +1 位作者 高胜利 李永亭 《太阳能学报》 EI CAS CSCD 北大核心 2019年第7期2053-2063,共11页
针对传统时频分析方法分解不准确、效率低下的问题,提出一种改进的自适应变分模态分解(AVMD)方法,该方法预先使用短时傅里叶变换预估模态数量,并对原始信号频谱与分量叠加频谱进行谱相关分析筛选最优惩罚因子,提高变分模态分解(VMD)的... 针对传统时频分析方法分解不准确、效率低下的问题,提出一种改进的自适应变分模态分解(AVMD)方法,该方法预先使用短时傅里叶变换预估模态数量,并对原始信号频谱与分量叠加频谱进行谱相关分析筛选最优惩罚因子,提高变分模态分解(VMD)的精确性,与经验模态分解(EMD)、聚合经验模态分解(EEMD)、小波变换相比,该方法分解速度快、准确度高。之后,结合AVMD和谱相关分析提出一种新的滚动轴承故障诊断方法,该方法首先采用AVMD将已知故障信号分解成若干本征模态,并使用主要成分分析(PCA)降维去噪后构成故障模型库;然后对新采集的检测信号进行相同处理得到检测特征向量;最后将检测向量和故障库故障库特征向量分别进行频域内谱相关性分析和判别,实现故障诊断。使用西储大学实验台轴承数据和实际风场采集数据对该方法进行验证,诊断结果表明该方法相比于传统方法,识别率有明显提高。 展开更多
关键词 故障诊断 风电机组 相关性析方法 滚动轴承 自适应变分模态分解
在线阅读 下载PDF
基于自适应VMD-Attention-BiLSTM的交通流组合预测模型 被引量:15
19
作者 殷礼胜 孙双晨 +2 位作者 魏帅康 田帅帅 何怡刚 《电子测量与仪器学报》 CSCD 北大核心 2021年第7期130-139,共10页
针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。首先,使用自适应变分模态分解将时空交通流... 针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。首先,使用自适应变分模态分解将时空交通流量序列分解为一系列有限带宽模态分量,细化了交通流信息,降低了非平稳性,提升了建模的精确度;其次,利用结合注意力机制的双向长短时记忆网络挖掘分解后交通流量序列中的时空相关性,从而揭示其时空变化规律,从而进一步提升了建模精确度,并且利用改进Adam算法进行网络权值优化,以加速了预测网络的训练收敛速度;最后,将各模态分量预测值叠加求和作为最终交通流预测值。实验结果表明,使用模态分解的预测模型预测性能明显优于未使用模态分解的预测模型,同时自适应VMD-Attention-BiLSTM预测模型相较于EEMD-Attention-BiLSTM预测模型,均方根误差降低了47.1%,该组合预测模型提升了预测精度,并且能够快速预测交通流量时间序列。 展开更多
关键词 短时交通流预测 自适应变分模态分解 双向长短时记忆网络 注意力机制
在线阅读 下载PDF
基于自适应VMD的混合储能容量优化配置研究 被引量:27
20
作者 刘仲民 齐国愿 +1 位作者 高敬更 王治国 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期75-81,共7页
针对用户用电需求和可再生能源发电情况,提出一种由重力势能储能、蓄电池和超级电容组成的混合储能系统,建立其数学模型。针对其不同的特性,提出基于自适应变分模态分解的混合储能系统容量优化配置策略,对混合储能容量优化配置模型求解... 针对用户用电需求和可再生能源发电情况,提出一种由重力势能储能、蓄电池和超级电容组成的混合储能系统,建立其数学模型。针对其不同的特性,提出基于自适应变分模态分解的混合储能系统容量优化配置策略,对混合储能容量优化配置模型求解。以某风光互补电站典型日功率数据为例,对最佳储能系统的分解尺度K和高中、中低频分界点及其对应的储能配置进行优化分析,仿真结果验证所提方案的经济性和合理性。 展开更多
关键词 风电功率 光伏功率 储能 自适应变分模态分解 容量优化配置
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部