期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于振动信号与深度学习的电力变压器故障诊断方法 被引量:5
1
作者 李浩 魏繁荣 +1 位作者 王浩 李旭东 《电工电能新技术》 CSCD 北大核心 2024年第10期1-12,共12页
针对当前电力变压器机械故障实时诊断准确率较低的问题,本文提出了一种基于振动信号与深度学习的电力变压器故障诊断方法。首先针对电力变压器箱体表面振动信号采用改进自适应噪声完备经验模态分解(ICEEMDAN)对其进行分解以获取重构信号... 针对当前电力变压器机械故障实时诊断准确率较低的问题,本文提出了一种基于振动信号与深度学习的电力变压器故障诊断方法。首先针对电力变压器箱体表面振动信号采用改进自适应噪声完备经验模态分解(ICEEMDAN)对其进行分解以获取重构信号,并引入模糊熵值构建振动特征向量。然后以卷积神经网络-双向门控循环单元(CNN-BiGRU)组成基础分类网络以实现特征分类,并引入高效通道注意力机制(ECAM)提升CNN学习性能。最后设计一种基于ICMIC混沌映射、自适应动态扰动和精英反向学习混合改进得到多策略协同优化秃鹰搜索(MSCOBES)算法,并将改进后的算法应用于实现CNN-BiGRU的超参数寻优,从而得到基于MSCOBES-CNN-BiGRU-ECAM的电力变压器故障诊断优化模型。在实验中对于试验变压器的机械故障进行诊断,实验结果表明本文所提出的方法对于电力变压器不同类型的机械故障的诊断准确率可达99.4%。 展开更多
关键词 电力变压器 故障诊断 ICEEMDAN CNN-BiGRU MSCOBES ICMIC混沌映射 自适应动态扰动 精英反向学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部