期刊文献+
共找到275篇文章
< 1 2 14 >
每页显示 20 50 100
基于双注意力图神经网络的链路预测 被引量:2
1
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 路预测 神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
2
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(ARBFNN)
在线阅读 下载PDF
基于RBF神经网络的光滑不确定模型自适应采样方法
3
作者 郑源 李艳 +2 位作者 高峰 张旭涛 杨勃 《计算机集成制造系统》 北大核心 2025年第8期2920-2929,共10页
由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将... 由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将其不确定度估计代入提出的考虑轮廓曲率影响的MaxCWVar信息标准中用于选择下一最优测点(NBP)。以叶片截面自由曲线为例,验证了该方法自适应采样性能的优越性。与其他自适应采样策略的对比表明,基于RBFNN的响应预测对于采样点位置确定具有很好的指导作用;与其他三个常用的NBP选择标准相比,根据MaxCWVar标准得到的采样点分布更为合理,能及时准确地跟随轮廓的几何特征变化,经样本密度与曲率之间的相关性分析得以验证。特别是对采样实时性有较高要求的情况下,所提出方法具有更好的重构精度和建模效率。研究成果对于探索快速、智能的复杂无模型光滑曲面重构方法具有启发意义。 展开更多
关键词 不确定模型 自适应采样 径向基函数神经网络 MaxCWVar信息标准 下一最优测点
在线阅读 下载PDF
基于分布式观测器的航天器姿态接管神经网络自适应控制
4
作者 骆轩宇 刘闯 岳晓奎 《宇航学报》 北大核心 2025年第8期1642-1653,共12页
针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线... 针对多个服务卫星接管非合作航天器的姿态跟踪控制问题,考虑模型参数未知、执行机构故障、外界扰动等因素,提出了一种基于分布式观测器的航天器姿态接管神经网络自适应控制方法。该方法通过径向基函数(RBF)神经网络,实现对参数未知非线性动力学模型的逼近;通过基于神经网络观测器的分布式状态观测器,解决了仅有部分卫星对目标进行测量的问题,实现了在模型未知情况下对组合体航天器的观测一致性;通过设计自适应补偿控制律,随执行机构故障调整控制参数,实现了对参考姿态运动的跟踪控制。将本文设计的控制方法应用于非合作航天器的姿态接管问题,仿真结果表明其能实现对组合体航天器姿态跟踪的精确控制。 展开更多
关键词 非合作航天器 径向基函数神经网络 自适应控制 分布式观测器 姿态接管控制
在线阅读 下载PDF
基于模糊自适应变权重算法的函数链神经网络预测方法 被引量:8
5
作者 罗周全 左红艳 +1 位作者 王爽英 王益伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期2812-2818,共7页
为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟... 为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,建立基于模糊自适应变权重算法的函数链神经网络预测模型。研究结果表明:基于模糊自适应变权重算法的函数链神经网络预测方法的预测精度较高,并且平均误差和预测平方根误差均较小,具有较强的泛化能力;该模糊自适应变权重函数链神经网络预测模型可用于复杂非线性工业系统决策。 展开更多
关键词 函数神经网络 模糊自适应变权重算法 预测 模糊 神经网络
在线阅读 下载PDF
基于模糊自适应变权重算法的采场冒顶函数链神经网络预报 被引量:8
6
作者 左红艳 罗周全 +1 位作者 王益伟 王爽英 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第4期894-900,共7页
为提高采场声发射事件率预报精度,将采场声发射事件率不同的单个预测模型的预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础... 为提高采场声发射事件率预报精度,将采场声发射事件率不同的单个预测模型的预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,对采场声发射事件率进行基于模糊自适应变权重算法的函数链神经网络预测,对其预测结果再进行函数链神经网络算法拟合,然后结合采场冒顶尖点突变模型的判别式对采场冒顶进行预报。某铅锌矿采场冒顶预报结果表明,基于模糊自适应变权重算法的函数链神经网络预测方法的预测误差小于0.3%,可实现采场冒顶精确预报。 展开更多
关键词 函数神经网络 模糊自适应变权重算法 预测 采场冒顶 声发射
在线阅读 下载PDF
基于RBF神经网络的分数阶虚拟同步机控制策略
7
作者 张赟宁 郭钟仁 张磊 《电力系统及其自动化学报》 北大核心 2025年第9期101-108,共8页
虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题... 虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题,本文首先建立分数阶虚拟同步机数学模型,引入可调参数增加系统的自由度。然后,设计径向基函数神经网络对虚拟同步机的转动惯量和阻尼系数进行在线自适应调节,将调节后的转动惯量、阻尼系数和可调参数应用于分数阶虚拟同步机控制器。最后,通过Matlab/Simulink仿真比较传统策略与所提控制策略的动态响应。仿真结果表明,所提控制策略能够显著抑制系统在发生扰动时输出有功功率和输出频率的振荡和超调,且具有良好的动态响应,验证了所提控制策略的有效性。 展开更多
关键词 虚拟同步发电机 分数阶微积分 径向基函数神经网络 自适应调节
在线阅读 下载PDF
基于物理信息神经网络的多介质非线性瞬态热传导问题研究
8
作者 陈豪龙 唐欣越 +2 位作者 王润华 周焕林 柳占立 《力学学报》 北大核心 2025年第1期89-102,共14页
文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利... 文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利用偏微分方程、初始条件、边界条件和子域间公共界面连续性条件的残差构建损失函数.通过自动微分算法计算偏微分方程中温度对各输入变量的偏导数.利用链式求导法计算损失函数对权重和偏差的梯度,再根据梯度下降法更新网络参数.为了加速网络收敛,在激活函数中引入训练参数,通过调节激活函数斜率,使网络具有自适应性.文章探讨了PINN在求解多介质非线性瞬态热传导问题中的适用性,并进一步讨论了不同激活函数、学习率、网络结构和损失函数中的各项权重等对PINN计算结果的影响.计算结果表明,PINN在求解多介质非线性瞬态热传导问题时仍具有较高的可靠性和较简洁的求解流程,且不需要对求解域进行人为的前处理,有一定工程应用可行性.文章通过系统的理论分析和数值验证,充分展示了PINN解决复杂热传导问题的可靠性. 展开更多
关键词 物理信息神经网络 非线性瞬态热传导问题 多介质 自适应激活函数
在线阅读 下载PDF
特征扩展的随机向量函数链神经网络
9
作者 龙茂森 王士同 《软件学报》 EI CSCD 北大核心 2024年第6期2903-2922,共20页
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的... 基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度,从而对其可解释性造成了不利影响.对此,提出一种兼顾分类性能和可解释性的模糊神经网络,将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN).在该网络中,一个以原始数据为输入的RVFLNN被作为主体结构,BL-DFIS则用作性能补充,这意味着FA-RVFLNN包含具有性能增强作用的直接链接.由于主体结构的增强节点使用Sigmoid激活函数,因此,其推理过程可借助一种模糊逻辑算子(I-OR)来解释.而且,具有明确含义的原始输入数据也有助于解释主体结构的推理规则.在直接链接的支撑下,FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息.实验表明:FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题,也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右),在泛化性能和网络规模上仍具有竞争力. 展开更多
关键词 宽度学习系统 模糊推理系统 特征扩展 随机向量函数神经网络(RVFLNN) Sigmoid激活函数 可解释
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
10
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子群优化 参数优化 适应函数
在线阅读 下载PDF
基于RBF神经网络的高速列车速度跟踪控制
11
作者 秦世玉 徐传芳 李云浩 《北京交通大学学报》 北大核心 2025年第3期111-119,共9页
针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间... 针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间的车间耦合作用力影响,建立高速列车多质点模型.其次,设计一种基于新型饱和函数的高速列车有限时间速度跟踪控制策略,引入非奇异快速终端滑模控制方法实现高速列车系统状态的有限时间收敛,改善高速列车速度跟踪的稳态精度和暂态性能.再次,设计基于RBF神经网络的自适应非奇异终端滑模跟踪控制策略,利用自适应技术实现对列车模型参数以及附加阻力、车间力等不确定性项上限的在线估计,并针对不连续切换控制项造成的抖振现象,引入RBF神经网络重映射非奇异快速终端滑模控制策略的切换控制项,同时设计权重系数的自适应更新律,实现连续切换,有效消除抖振现象所带来的影响.最后,基于Lyapunov稳定性理论证明高速列车速度跟踪控制系统的稳定性,以及系统状态的有限时间收敛性,并以CRH380B型动车组作为控制对象进行仿真验证.仿真结果表明:高速列车可以在有限时间内收敛并跟踪理想轨线,跟踪误差下降了49%,跟踪精度提高,能够为高速列车跟踪控制领域提供借鉴和参考. 展开更多
关键词 高速列车 径向基函数神经网络 多质点模型 速度跟踪 自适应滑模控制
在线阅读 下载PDF
基于自适应混合结构的快速收敛函数链接人工神经网络算法研究 被引量:2
12
作者 李欢欢 《振动与冲击》 EI CSCD 北大核心 2021年第10期180-186,共7页
在非线性主动噪声控制方法中,函数链接人工神经网络(FLANN)算法是最常用的算法之一。FLANN降噪量大,但是其收敛速度较慢。为解决该问题,通过一个自适应混合参数对BFXLMS算法和FLANN算法进行有效结合,提出了CBFLANN算法。在不降低FLANN... 在非线性主动噪声控制方法中,函数链接人工神经网络(FLANN)算法是最常用的算法之一。FLANN降噪量大,但是其收敛速度较慢。为解决该问题,通过一个自适应混合参数对BFXLMS算法和FLANN算法进行有效结合,提出了CBFLANN算法。在不降低FLANN降噪量的情况下,提高了其收敛速度,解决了FLANN算法无法同时实现快速收敛和低稳态误差的问题。多个仿真实验对提出的CBFLANN算法的降噪性能进行了验证,结果表明,CBFLANN同时拥有BFXLMS的收敛速度和FLANN的降噪量。该算法的提出可以为传统主动噪声控制算法难以同时兼顾收敛速度与稳态误差的问题提供解决方案,具有很强的实际应用价值。 展开更多
关键词 非线性主动噪声控制 函数接人工神经网络(FLANN) 收敛速度 稳态误差
在线阅读 下载PDF
基于自适应扰动观测器的旋转弹神经网络过载驾驶仪设计
13
作者 王伟 杨婧 +2 位作者 南宇翔 李俊辉 王雨辰 《兵工学报》 EI CAS CSCD 北大核心 2024年第11期3841-3855,共15页
旋转弹在飞行过程中受多种干扰的影响,包括跨域飞行气动参数剧烈变化引起的模型不确定性以及飞行过程中受到的外部扰动。为了解决高动态飞行环境中双通道旋转弹的鲁棒控制问题,基于轨迹线性化控制方法,设计伪逆反馈控制器。采用径向基... 旋转弹在飞行过程中受多种干扰的影响,包括跨域飞行气动参数剧烈变化引起的模型不确定性以及飞行过程中受到的外部扰动。为了解决高动态飞行环境中双通道旋转弹的鲁棒控制问题,基于轨迹线性化控制方法,设计伪逆反馈控制器。采用径向基函数神经网络,设计自适应前馈补偿控制器,有效实现对模型不确定性的精确逼近。将神经网络逼近误差和外部扰动处理为总扰动,并基于固定时间稳定理论设计一种自适应扰动观测器,实现对总扰动的精确估计及补偿。通过Lyapunov理论,严格证明了闭环系统的最终一致有界性。通过数值仿真验证了所设计方法的有效性。 展开更多
关键词 旋转弹 双通道控制 径向基函数神经网络 自适应扰动观测器 固定时间稳定理论
在线阅读 下载PDF
基于函数链径向基神经网络的PMLSM自适应反推控制 被引量:9
14
作者 吴勇慷 赵希梅 《电工技术学报》 EI CSCD 北大核心 2018年第17期4044-4051,共8页
为提高永磁直线同步电动机(PMLSM)伺服系统的控制性能,解决参数变化、外部扰动和摩擦力等不确定性因素对系统影响的问题,提出一种基于函数链径向基神经网络(FLRBFNN)的自适应反推控制(ABC)方法。首先建立含有不确定性因素的PMLSM动态模... 为提高永磁直线同步电动机(PMLSM)伺服系统的控制性能,解决参数变化、外部扰动和摩擦力等不确定性因素对系统影响的问题,提出一种基于函数链径向基神经网络(FLRBFNN)的自适应反推控制(ABC)方法。首先建立含有不确定性因素的PMLSM动态模型;其次,利用ABC中的自适应律对系统总不确定性进行估计,但在设计ABC时存在大量求导运算,以至于产生"微分爆炸"现象。因此,为解决这一问题并进一步提高系统性能,采用FLRBFNN在线学习并调整控制器参数,FLRBFNN将径向基神经网络(RBFNN)和函数链神经网络(FLNN)相结合,利用FLNN增大神经网络搜索空间,提高网络收敛速度和收敛精度,从而提高RBFNN估计系统不确定性的能力,有效降低不确定性因素对系统的影响。实验结果表明,该方法切实可行,与ABC相比,能够使系统具有较强的鲁棒性能和跟踪性能。 展开更多
关键词 永磁直线同步电动机 不确定性因素 函数径向基神经网络 自适应反推控制
在线阅读 下载PDF
四旋翼飞行器的RBF神经网络鲁棒自适应控制 被引量:1
15
作者 马振伟 白浩 +1 位作者 陈洪波 王劲博 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1620-1628,共9页
针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全... 针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全局一致最终有界的问题,实现了控制精度和鲁棒性的双重提升。所设计的控制器由在近似域内工作的神经网络控制器和在近似域外工作的鲁棒控制器组成。引入一种新型切换函数来实现两者之间的平滑切换,以保证闭环系统的所有信号是全局一致最终有界的。利用Lyapunov函数和Barbalat引理严格证明了非线性四旋翼飞行器系统的稳定性。仿真表明,所设计的控制器在模型不确定性和有界外部扰动下对参考轨迹依旧保持良好的跟踪性能,且跟踪误差趋近于零。 展开更多
关键词 四旋翼飞行器 RBF神经网络 鲁棒自适应控制 平滑切换函数 全局一致最终有界
在线阅读 下载PDF
基于自适应径向基函数神经网络的无刷直流电机直接电流控制 被引量:53
16
作者 夏长亮 王娟 +3 位作者 史婷娜 陈炜 徐绍辉 杨荣 《中国电机工程学报》 EI CSCD 北大核心 2003年第6期123-127,共5页
提出了基于自适应径向基函数(Radial Basis Function)神经网络的无刷直流电机直接电流控制新方法。该方法构造了一个隐层节点初始个数为零的RBF网络,通过在训练过程中不断地按照自适应算法添加和删除隐层单元, 形成 一个结构简单、紧凑... 提出了基于自适应径向基函数(Radial Basis Function)神经网络的无刷直流电机直接电流控制新方法。该方法构造了一个隐层节点初始个数为零的RBF网络,通过在训练过程中不断地按照自适应算法添加和删除隐层单元, 形成 一个结构简单、紧凑的RBF网络来实现电机电压、电流与功率开关导通信号之间的非线性映射,直接控制功率开关的通断,实现无位置传感器的直接电流控制。网络训练采用离线训练和在线训练相结合的方法。首先利用来自实验数据的训练样本按给出的自适应算法对网络进行离线训练,确定RBF网络隐层节点的个数及位置;再按递推最小二乘法(RLS)在线修正隐层与输出层之间的连接权;最后,用数字处理器(DSP)实现在线控制算法。实验结果表明,该控制方法具有较高的鲁棒性和控制精度。 展开更多
关键词 无刷直流电机 直接电流控制 自适应径向基函数 神经网络 无位置传感器
在线阅读 下载PDF
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
17
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向基函数神经网络 自适应粒子群优化 量子比特 流量预测
在线阅读 下载PDF
基于函数链神经网络的管道煤气流量计量系统 被引量:8
18
作者 鄂加强 张华美 +1 位作者 龚金科 王耀南 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第5期976-980,共5页
在管道煤气计量系统测量中引入管道煤气相对湿度修正,并采用湿度传感器转换相对湿度信号,利用函数链神经网络对管道煤气工况温度下所对应的水蒸汽饱和压力进行拟合,得到基于函数链神经网络的管道煤气流量计量模型和在线计量系统,从而大... 在管道煤气计量系统测量中引入管道煤气相对湿度修正,并采用湿度传感器转换相对湿度信号,利用函数链神经网络对管道煤气工况温度下所对应的水蒸汽饱和压力进行拟合,得到基于函数链神经网络的管道煤气流量计量模型和在线计量系统,从而大大简化管道煤气流量计量软件,在流量计设计范围内实现管道煤气流量实时在线计量。实际应用结果表明,该计量系统测量管道煤气流量误差小于0.7%。 展开更多
关键词 函数神经网络 管道煤气 数据处理 测量
在线阅读 下载PDF
基于自适应动态目标函数的模糊聚类神经网络 被引量:3
19
作者 包芳 潘永惠 +1 位作者 须文波 孙俊 《计算机工程》 CAS CSCD 北大核心 2008年第11期35-37,40,共4页
结合输入空间的聚类特性和输出空间实时逼近特性,在模糊聚类的目标函数中引入恰当的反馈因素,基于自适应动态目标函数,该文提出一种新的模糊聚类神经网络实现算法。该算法在收敛稳定性、收敛速度、初值敏感性方面,相对于传统模糊聚类算... 结合输入空间的聚类特性和输出空间实时逼近特性,在模糊聚类的目标函数中引入恰当的反馈因素,基于自适应动态目标函数,该文提出一种新的模糊聚类神经网络实现算法。该算法在收敛稳定性、收敛速度、初值敏感性方面,相对于传统模糊聚类算法有了明显改善,相关实验表明,该算法具备高效、稳定的工程应用价值。 展开更多
关键词 模糊聚类 神经网络 目标函数 自适应 动态 选址决策
在线阅读 下载PDF
自适应径向基函数神经网络 被引量:11
20
作者 王上飞 汤汇道 《合肥工业大学学报(自然科学版)》 CAS CSCD 2001年第2期244-247,共4页
文章根据隐节点对整个网络输出贡献的相对大小 ,提出删除策略 ,并结合资源分配网络的增长规则 ,使得径向基函数神经网络的隐节点在学习过程中可以自适应地增加或删除 ,从而形成一个网络资源较少、结构紧凑的自适应径向基函数神经网络。... 文章根据隐节点对整个网络输出贡献的相对大小 ,提出删除策略 ,并结合资源分配网络的增长规则 ,使得径向基函数神经网络的隐节点在学习过程中可以自适应地增加或删除 ,从而形成一个网络资源较少、结构紧凑的自适应径向基函数神经网络。将该网络应用于函数拟合和非线性时间序列预测 。 展开更多
关键词 删除策略 增加规则 自适应 隐节点 径向基函数神经网络 函数拟合 非线性时间序列预测
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部