期刊文献+
共找到898篇文章
< 1 2 45 >
每页显示 20 50 100
基于参数优化变分模态分解的信号降噪方法
1
作者 何玉洁 李新娥 贺俊 《现代电子技术》 北大核心 2025年第2期70-76,共7页
针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与... 针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与惩罚因子α;对含噪心电信号进行分解,得到k个本征模态函数(IMF)分量,同时采用相关系数法进行有效模态和含噪模态识别;对噪声主导的模态分量采用小波阈值降噪,并重构信号主导模态与降噪后模态。对仿真信号与含真实肌电干扰的心电信号进行降噪处理,实验结果表明,所提方法去噪效果优于小波阈值去噪法、EMD法、EMD-小波阈值去噪法,真实含噪的心电信号经该方法去噪后自相关系数可达0.91以上。 展开更多
关键词 模态分解 信号降噪 参数优化 改进白鲸优化算法 心电信号 IMF 小波阈值降噪 肌电干扰
在线阅读 下载PDF
自适应变分模态分解算法在高温高压水空化特性分析中的应用
2
作者 许博 胡鸿飞 王海军 《西安交通大学学报》 EI CAS 北大核心 2025年第1期56-67,共12页
针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法... 针对高温高压流动工况下,空化状态判断困难、传统分析方法难以有效提取压力脉动信号中的有效信息的问题,以孔板为对象,开展了高温高压水的空化实验,并提出了一种基于遗传算法的自适应变分模态分解(AVMD)算法。该算法通过结合中心频率法、遗传算法、功率谱熵和相对能量等技术,自适应地确定变分模态分解算法中的超参数并有效去除信号中的噪声成分,提高了空化特征的提取精度。结果表明:AVMD算法能够精确捕捉到高温高压水流经孔板时空化现象的发生和发展,识别空化起始点、转捩点以及空化强度的变化;当高温高压水流经孔板后,压力脉动的无量纲频率在0.04~0.35、压力脉动的无量纲幅值在0.014~0.067时,空化现象开始出现;随着空化强度增加,管内压力脉动幅值和频率整体呈增大趋势;空化起始转捩点及空化严重转捩点与入口压力和工质入口过冷度密切相关。AVMD算法能够有效提高空化特性分析的精度,尤其是在复杂流动条件下的空化预测,为压水堆核电站冷却剂系统和高压蒸汽系统的稳定运行提供理论依据和参考。 展开更多
关键词 高温高压水 空化特性 自适应模态分解 孔板
在线阅读 下载PDF
基于变分模态分解的自适应交叉融合模型及其在月径流预测中的应用
3
作者 孙瑜辉 王庆杰 岳春芳 《水电能源科学》 北大核心 2025年第3期1-6,共6页
基于“分解—集成”策略的径流预测模型是现有研究中提高预测精度的主流方式之一。分解—集成建模方式主要有后验试验(HE)、预测试验(FE)和自适应预测试验(AFE)3种方式,已有研究主要聚焦于HE的改进,忽视了各建模方式的实用性研究。基于... 基于“分解—集成”策略的径流预测模型是现有研究中提高预测精度的主流方式之一。分解—集成建模方式主要有后验试验(HE)、预测试验(FE)和自适应预测试验(AFE)3种方式,已有研究主要聚焦于HE的改进,忽视了各建模方式的实用性研究。基于此,在梳理各类建模方式特性的基础上,以天山山系中两条典型的内陆河为例,选用BP神经网络(BP)、支持向量机(SVM)和随机森林(RF)为基准预测模型,基于变分模态分解(VMD)和互补集合经验模态分解(CEEMD)分别构建多种分解—集成预测模型,并探索了AFE与基准模型交叉融合后的预测能力。仿真结果表明,HE建立时提前使用了测试数据信息,与预测实际不符;FE在测试数据分解时受端点效应影响严重,预测精度极低;AEF符合逐时段观测—滚动分解—实时建模预测的实际,基于VMD和CEEMD的AFE模型对径流极大值的预测精度较高。在AFE类模型中,VMD的适应性更强,可实现流域汛期月径流的高精度预报。基于VMD分解的自适应交叉融合模型能够取得与HE模型相当甚至更高的预测精度,对径流预测精度的提高具有实际意义。 展开更多
关键词 径流预测 端点效应 模态分解 后验试验 预测试验 自适应预测试验
在线阅读 下载PDF
基于参数优化变分模态分解和马田系统的工业缝纫机故障诊断方法
4
作者 周中华 刘祖斌 《高技术通讯》 北大核心 2025年第1期73-84,共12页
针对工业缝纫机出厂质检的人耳听音传统方式准确率不高、耗时耗力的问题,提出了一种基于参数优化变分模态分解(variational mode decomposition,VMD)和马田系统(Mahalanobis-Taguchi system,MTS)的工业缝纫机故障诊断方法。首先,通过樽... 针对工业缝纫机出厂质检的人耳听音传统方式准确率不高、耗时耗力的问题,提出了一种基于参数优化变分模态分解(variational mode decomposition,VMD)和马田系统(Mahalanobis-Taguchi system,MTS)的工业缝纫机故障诊断方法。首先,通过樽海鞘群算法(salp swarm algorithm,SSA)对变分模态分解的相关参数进行迭代寻优,并利用获得最优参数的VMD对工业缝纫机声信号进行分解得到不同中心频率的固有模态函数(intrinsic mode function,IMF);然后,分别对IMF分量进行多域特征融合,并且采用正常样本构建了MTS的基准空间,进一步利用了少量故障样本来验证和优化基准空间;最后,结合马氏距离的阈值实现了准确的故障识别分类。通过仿真信号的对比分析,证明了SSA-VMD算法分解信号的可行性和优越性;实验数据和实测数据的研究结果表明了所提出的故障诊断方法具有一定的实际应用价值。 展开更多
关键词 工业缝纫机 故障诊断 模态分解 马田系统 多域特征融合
在线阅读 下载PDF
基于射流瞬态流速变分模态分解法的纬纱波动幅度预测
5
作者 沈敏 欧阳灿 +4 位作者 熊小双 王真 杨学正 吕永法 余联庆 《纺织学报》 北大核心 2025年第1期187-196,共10页
为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)... 为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)方法数值模拟了圆锥形、圆弧形及圆柱形入口辅助喷嘴射流的瞬态流场分布,监测了辅助喷嘴射流在势核与势尾区域瞬态速度信号;继而,通过VMD方法,得到监测点速度的本征模态分量,讨论了各本征模态信号波动的方差,最后通过双向流固耦合法得到纬纱的径向偏移来验证预测的准确性。结果发现:3种辅助喷嘴势核与势尾处主模态IMF1速度幅值稳定,为辅助喷嘴的主速度模态;次模态IMF2波动大且与纬纱径向偏移具有同步性,可用于预测纬纱波动;第3模态IMF3为高频振荡信号,可视为流场高频噪声信号去除。 展开更多
关键词 喷气织机 辅助喷嘴射流 瞬态流场 大涡模拟 模态分解 纬纱波动
在线阅读 下载PDF
采用变分模态分解与领域自适应的表面肌电信号手势识别 被引量:1
6
作者 姜海燕 许先静 +1 位作者 钟凌珺 李竹韵 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期75-87,共13页
针对传统机器学习在表面肌电信号手势识别领域的适应性和准确性不足,以及新用户因个体生理和行为差异在已有模型上表现不佳的问题,提出一种利用卷积神经网络模型并有效克服肌电数据分布差异的算法,用于提升手势识别的性能。首先对肌电... 针对传统机器学习在表面肌电信号手势识别领域的适应性和准确性不足,以及新用户因个体生理和行为差异在已有模型上表现不佳的问题,提出一种利用卷积神经网络模型并有效克服肌电数据分布差异的算法,用于提升手势识别的性能。首先对肌电信号进行变分模态分解,构建易于识别的表面肌电图像,并提出了一种卷积神经网络模型进行手势识别,提升用户相关的肌电信号手势识别准确率;同时利用迁移学习中的领域自适应和模型微调技术,提升用户无关的肌电信号手势识别准确率,并将所提算法在NinaPro DB1肌电数据集中进行了3分类、4分类、5分类和12分类共4组评估验证。结果表明:在4组评估验证中,用户相关的肌电信号手势识别平均准确率分别达到了99.28%、99.30%、98.39%和93.40%,用户无关的肌电信号手势识别平均准确率分别达到了94.05%、92.60%、88.38%和70.03%,表明本文提出的算法在表面肌电信号手势识别中具有良好的效果,为实现人机交互中的普适性的肌电设备开发提供了一种可行的方案。 展开更多
关键词 领域自适应 卷积神经网络 手势识别 模态分解 表面肌电信号
在线阅读 下载PDF
基于变分模态分解和分段多项式截断奇异值分解的桥梁影响线识别
7
作者 万桂军 黎剑安 冯东明 《浙江大学学报(工学版)》 北大核心 2025年第3期460-468,共9页
为了提高桥梁影响线的识别精度,提出基于变分模态分解(VMD)和分段多项式截断奇异值分解(PPTS-VD)的桥梁影响线识别方法.该方法应用VMD技术将桥梁位移分解成若干固有模态函数(IMF),通过融合多个低阶IMF提取桥梁响应的准静态成分,利用PPT... 为了提高桥梁影响线的识别精度,提出基于变分模态分解(VMD)和分段多项式截断奇异值分解(PPTS-VD)的桥梁影响线识别方法.该方法应用VMD技术将桥梁位移分解成若干固有模态函数(IMF),通过融合多个低阶IMF提取桥梁响应的准静态成分,利用PPTSVD从准静态成分中识别桥梁影响线.为了验证所提方法的准确性,建立三跨连续梁桥和四轴车数值仿真模型,模拟不同车速、路面不平度和噪声水平,并针对500组数值仿真结果进行测试.将所提方法与经典方法进行对比,并全面讨论车速、路面不平度和噪声对识别结果的影响.进行验证试验,测试实验室环境下所提方法的准确性和适用性.研究结果表明,所提方法能从桥梁响应中准确识别出桥梁影响线,最大误差仅为1.38%;相比传统方法,所提方法显著减少了车速、路面不平度和噪声对识别结果的干扰,提高了识别的鲁棒性和精度. 展开更多
关键词 桥梁健康监测 桥梁动力 车桥耦合系统 影响线识别 模态分解
在线阅读 下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别
8
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化模态分解(IVMD) 时域衰减速度 声振法
在线阅读 下载PDF
侵彻过载信号自适应变分模态分解时频分析方法
9
作者 谢雨岑 郜王鑫 +2 位作者 邵志豪 房安琪 张珂 《探测与控制学报》 CSCD 北大核心 2024年第4期69-78,共10页
传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信... 传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信号频率成分复杂且具有的非平稳性、随机性特点,该方法以模态的混叠效应和稀疏性作为信号的分解约束,采用非支配排序遗传算法(NSGA-II)搜索获取变分模态分解算法的分解个数和二次惩罚因子,再基于参数优化的变分模型,确定各模态函数的中心频率和带宽,完成过载信号各频率成分的自适应分解。通过对实测侵彻过载信号分析可见,相比于通用经验模态分解算法,该方法可以有效抑制模态混叠现象,且在时域和频域上均具有更好的分辨率,能为引信系统的信号处理、仿真模型验证、结构设计提供有效信息支撑。 展开更多
关键词 侵彻过载信号 时频 模态混叠 自适应优化变分模态分解
在线阅读 下载PDF
基于传声器阵列与变分模态分解的管道泄漏定位技术
10
作者 夏丹 刁生林 《舰船科学技术》 北大核心 2025年第6期55-61,共7页
确保船舶管道系统安全运行是一项关键任务,特别是现代的大型运输船舶,这些船舶负责输送燃油、压缩空气等化学性质活跃的物质,一旦船舶管道发生泄漏,不仅会导致资源浪费,甚至可能引发安全事故。为了实现利用传感器阵列对船舶管道泄漏进... 确保船舶管道系统安全运行是一项关键任务,特别是现代的大型运输船舶,这些船舶负责输送燃油、压缩空气等化学性质活跃的物质,一旦船舶管道发生泄漏,不仅会导致资源浪费,甚至可能引发安全事故。为了实现利用传感器阵列对船舶管道泄漏进行准确的定位,本文提出一种结合变分模态分解(VMD)和广义互相关(GCC)的泄漏定位方法。考虑到船舶在海上航行时复杂的环境噪声,研究首先应用VMD对从各个传感器获得的泄漏信号进行多重分解,随后基于互相关系数自适应地选取主要的固有模态函数(IMF)分量,并消除噪声成分。此外,本文考虑到广义互相关权函数的特性,进一步提出一种改进的权函数,以纳入信噪比对时延估计精度的影响。以五元十字形传感器阵列为例,本文详细阐述了声源定位的计算方法。通过实施管道泄漏实验,研究结果验证了所提方法在不同工况下都能实现鲁棒且精确的时延估计,从而准确地定位管道泄漏。 展开更多
关键词 传声器阵列 时延估计 模态分解 管道泄漏定位
在线阅读 下载PDF
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
11
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法
12
作者 李嘉波 王志璇 +1 位作者 田迪 孙中麟 《储能科学与技术》 北大核心 2025年第2期659-670,共12页
锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition... 锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition,VMD)、麻雀优化算法(sparrow search algorithm,SSA)和长短期记忆网络(long short-term memory,LSTM)的组合预测算法对锂离子电池剩余寿命进行预测。首先,基于锂离子电池电流、电压以及温度曲线,提取等压差充电时间、等压差充电能量、放电温度峰值和恒流充电时间作为预测RUL的间接健康因子。其次,采用变模态分解法分解容量以避免容量回升的局部波动和测试噪声对RUL预测结果造成干扰。针对传统LSTM模型超参数设置易受到经验和随机性的影响,提出了麻雀优化算法对LSTM模型参数进行优化,以提升模型的预测能力。最后,应用NASA和CALCE数据集,将所提模型与其他模型进行对比。实验结果表明,锂离子电池RUL预测均方根误差控制在2%以内,所提方法具有较高的预测性能。 展开更多
关键词 锂离子电池 剩余使用寿命 模态分解 麻雀优化算法 长短期记忆网络
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
13
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 模态分解(VMD) 整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
遗传算法优化变分模态分解提取舰船辐射噪声特征线谱方法 被引量:3
14
作者 沈鑫玉 陈涛 +2 位作者 郭良浩 刘建军 陈艳丽 《应用声学》 CSCD 北大核心 2024年第1期1-11,共11页
特征线谱提取是舰船目标识别的一个重要研究环节,常采用传统的DEMON谱分析方法,处理过程中,一般对舰船噪声时域信号未予抑噪,低信噪比情况下,传统DEMON谱分析性能差。对此,提出一种采用遗传算法优化变分模态分解方法,用于分解舰船噪声... 特征线谱提取是舰船目标识别的一个重要研究环节,常采用传统的DEMON谱分析方法,处理过程中,一般对舰船噪声时域信号未予抑噪,低信噪比情况下,传统DEMON谱分析性能差。对此,提出一种采用遗传算法优化变分模态分解方法,用于分解舰船噪声原时域信号,获得抑制噪声后的舰船噪声重构信号,进而有效提取了舰船目标噪声幅度调制特征线谱。该方法首先采用遗传算法优化变分模态分解的两个关键输入参数(分解所取模态个数和惩罚因子),对变分模态分解得到的各阶固有模态分量加以判别,去除噪声主导分量,保留信号主导分量,使重构舰船噪声信号显著抑制了干扰噪声,然后对降噪后的重构信号进行频谱分析,获得目标噪声调制特征线谱。理论分析、仿真和实验数据处理结果表明,相比传统DEMON谱分析法,基于遗传算法优化变分模态分解的舰船噪声特征线谱提取方法具有更好的噪声抑制能力,所获取的舰船噪声幅度调制特征线谱信噪比明显高于传统DEMON方法,具有一定优势,前景良好。 展开更多
关键词 舰船辐射噪声 遗传算法 模态分解 特征线谱提取
在线阅读 下载PDF
基于自适应变分模态分解的齿轮箱故障诊断 被引量:1
15
作者 谢锋云 汪淦 +2 位作者 赏鉴栋 樊秋阳 朱海燕 《推进技术》 EI CAS CSCD 北大核心 2024年第9期218-227,共10页
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值... 针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强。利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量。使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别。通过实验验证,该模型10次测试的平均准确率可达95.04%。与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法。 展开更多
关键词 航空齿轮箱 故障诊断 信号降噪 自适应模态分解 粒子群算法 核极限学习机
在线阅读 下载PDF
遗传算法优化变分模态分解在轴承故障特征提取中的应用 被引量:4
16
作者 单玉庭 刘韬 +1 位作者 褚惟 缪护 《噪声与振动控制》 CSCD 北大核心 2024年第1期148-153,204,共7页
针对变分模态分解(Variational Mode Decomposition,VMD)过程中模态分量个数和惩罚参数大小依赖先验知识,单一或顺序优化单一参数可能导致局部最优的问题,提出以包络熵和包络峭度因子作为适应度函数,利用遗传算法全局寻优的特点,对VMD... 针对变分模态分解(Variational Mode Decomposition,VMD)过程中模态分量个数和惩罚参数大小依赖先验知识,单一或顺序优化单一参数可能导致局部最优的问题,提出以包络熵和包络峭度因子作为适应度函数,利用遗传算法全局寻优的特点,对VMD的模态分量个数和惩罚参数组合进行优化。通过最优参数组合下的VMD对信号进行分解,可以获得多个本征模态分量(Intrinsic Mode Function,IMF),选择适应度函数最小IMF分量作为有效IMF分量进行包络解调,从中提取轴承信号的故障特征频率。对多种轴承故障类型信号进行分析并与其他方法对比,结果表明所提方法能有效提取轴承故障特征,有助于实现微弱故障条件下轴承故障特征频率的准确提取。 展开更多
关键词 故障诊断 模态分解 包络熵 包络峭度因子 遗传算法 包络解调
在线阅读 下载PDF
基于波浪激励响应自适应变分模态分解的高桩码头桩基损伤识别
17
作者 王泊淳 王启明 +1 位作者 朱瑞虎 李成明 《振动与冲击》 EI CSCD 北大核心 2024年第21期147-155,221,共10页
波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱... 波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱复杂,分解所需的模态数和罚因子会严重影响分解结果。为解决该问题,提出了一种自适应变分模态分解方法(improved adaptive variational mode decomposition,IAVMD),该方法通过罚权系数自适应调整各频率分量的罚因子,并通过分解结果的信号完整度来确定最佳模态数。进一步通过波浪激励下的高桩码头模型试验对IAVMD的有效性、适用性进行了验证。结果表明,该方法能够准确分离出动力响应损伤特征子信号,并根据能量因子确定损伤位置和大小。 展开更多
关键词 波浪激励 损伤检测 信号重构 自适应模态分解(IAVMD)
在线阅读 下载PDF
基于优化变分模态分解的轨道电路信号分析方法
18
作者 魏子钧 杨世武 +2 位作者 李文涛 崔勇 楚少童 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第5期198-208,共11页
针对轨道电路设备应用场景多样且复杂电磁骚扰源影响轨道电路信号传输的问题,提出一种基于麻雀搜索算法(Sparrow Search Algorithm,SSA)的优化变分模态分解方法 (Variational Modal Decomposition,VMD),实现轨道电路信号分析处理。首先... 针对轨道电路设备应用场景多样且复杂电磁骚扰源影响轨道电路信号传输的问题,提出一种基于麻雀搜索算法(Sparrow Search Algorithm,SSA)的优化变分模态分解方法 (Variational Modal Decomposition,VMD),实现轨道电路信号分析处理。首先,通过基于平均包络熵适应度函数的麻雀搜索算法,实现VMD关键参数的优化选取;其次,采用优化参数的VMD方法,分离深度耦合的轨道电路信号和随机骚扰,实现强噪声背景下轨道电路信号的检测以及骚扰成分的提取和降维;最后,基于Matlab生成仿真混叠信号进行验证,对比提出的SSA-VMD轨道电路信号处理方法与现有信号自适应分解方法的处理效果。结果表明:SSA-VMD方法较现有方法在准确性上有较大优势,处理后信号的信噪比提升可达30 dB;同时,使用现场实测含噪数据验证也表明,SSA-VMD方法对于轨道电路信号的分析处理能达到预期的应用效果。 展开更多
关键词 轨道电路 模态分解 麻雀搜索算法 信号处理 信噪比
在线阅读 下载PDF
基于优化变分模态分解和包络峭度的轴承故障诊断
19
作者 刘烽 陈学军 +1 位作者 张磊 杨康 《计量学报》 CSCD 北大核心 2024年第10期1533-1540,共8页
针对变分模态分解(VMD)的分解层数K和惩罚因子α难以选择问题,提出了用减法平均优化器(SABO)对参数寻优的方法。首先,采用SABO对K和α进行寻优,输出最优参数组合并代入到VMD中,将原始振动信号分解得到K个模态分量;然后,用最大包络峭度... 针对变分模态分解(VMD)的分解层数K和惩罚因子α难以选择问题,提出了用减法平均优化器(SABO)对参数寻优的方法。首先,采用SABO对K和α进行寻优,输出最优参数组合并代入到VMD中,将原始振动信号分解得到K个模态分量;然后,用最大包络峭度为指标提取K个模态分量中峭度最大的分量作为最优分量,并计算其相关时域和熵理论特征参数构造特征向量样本集;最后,将特征向量样本集输入到经网格搜索和五折交叉验证调参的支持向量机(SVM)中进行故障诊断。为了验证该方法的有效性,利用凯斯西储大学轴承数据集进行实验,实验结果表明:该方法分类效果更好,准确率达到99.44%;基于江南大学3种不同工况的轴承数据实验,最终故障诊断准确率都达到了95%以上。 展开更多
关键词 力学计量 滚动轴承 故障诊断 模态分解 减法平均优化 包络峭度 优化算法
在线阅读 下载PDF
基于优化变分模态分解与计算阶次分析的主轴承故障特征增强方法 被引量:1
20
作者 栾孝驰 张振鹏 +2 位作者 沙云东 高翔 王李成 《推进技术》 EI CAS CSCD 北大核心 2024年第11期179-191,共13页
针对航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出了基于优化变分模态分解与计算阶次分析的主轴承故障特征增强方法。该方法将转速信号进行积分得到角位移信号,通过等角位移重采样将非平稳的振动时域... 针对航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出了基于优化变分模态分解与计算阶次分析的主轴承故障特征增强方法。该方法将转速信号进行积分得到角位移信号,通过等角位移重采样将非平稳的振动时域信号转化为振动角域稳态信号。为了更好地分离信号中的高背景噪声,提取微弱故障信息,通过人工蜂鸟算法对变分模态分解(VMD)的惩罚因子和分解层数进行优化,使用优化后的VMD方法分解振动角域稳态信号;以故障特征能量比(FCER)作为指标对变分模态分解后的各信号分量进行评价,选择FCER大于所有分量均值的分量重构,实现振动角域信号降噪;对重构的振动角域信号进行包络谱分析,得到阶次谱并与理论故障特征阶次进行对比,实现故障诊断。通过仿真数据以及开展整机试车条件下获得的航空发动机主轴承外圈压坑故障实验数据对本文所提方法的有效性进行验证。结果表明:与局部均值分解-故障特征能量比(LMD-FCER)、小波包分解-峭度值指标-希尔伯特变换(WPD-KVI-Hilbert)分析方法相比,本文所提方法可以有效增强主轴承外圈故障特征阶次,实现了高转速、高背景噪声和变转速工况下航空发动机主轴承微弱故障的有效诊断。 展开更多
关键词 主轴承 优化模态分解 计算阶次 故障特征增强 高背景噪声 故障诊断
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部