期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
代价敏感惩罚AdaBoost算法的非平衡数据分类 被引量:13
1
作者 鲁淑霞 张振莲 翟俊海 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第2期339-346,共8页
针对非平衡数据分类问题,提出了一种基于代价敏感的惩罚AdaBoost算法。在惩罚Adaboost算法中,引入一种新的自适应代价敏感函数,赋予少数类样本及分错的少数类样本更高的代价值,并通过引入惩罚机制增大了样本的平均间隔。选择加权支持向... 针对非平衡数据分类问题,提出了一种基于代价敏感的惩罚AdaBoost算法。在惩罚Adaboost算法中,引入一种新的自适应代价敏感函数,赋予少数类样本及分错的少数类样本更高的代价值,并通过引入惩罚机制增大了样本的平均间隔。选择加权支持向量机(Support vector machine,SVM)优化模型作为基分类器,采用带有方差减小的随机梯度下降方法(Stochastic variance reduced gradient,SVRG)对优化模型进行求解。对比实验表明,本文提出的算法不但在几何均值(G-mean)和ROC曲线下的面积(Area under ROC curve,AUC)上明显优于其他算法,而且获得了较大的平均间隔,显示了本文算法在处理非平衡数据分类问题上的有效性。 展开更多
关键词 非平衡数据 惩罚AdaBoost 自适应代价敏感函数 平均间隔 随机梯度下降
在线阅读 下载PDF
基于最优间隔的AdaBoost_(v)算法的非平衡数据分类 被引量:3
2
作者 鲁淑霞 张振莲 《计算机科学》 CSCD 北大核心 2021年第11期184-191,共8页
为了解决非平衡数据分类问题,提出了一种基于最优间隔的AdaBoost v算法。该算法采用改进的SVM作为基分类器,在SVM的优化模型中引入间隔均值项,并根据数据非平衡比对间隔均值项和损失函数项进行加权;采用带有方差减小的随机梯度方法(Stoc... 为了解决非平衡数据分类问题,提出了一种基于最优间隔的AdaBoost v算法。该算法采用改进的SVM作为基分类器,在SVM的优化模型中引入间隔均值项,并根据数据非平衡比对间隔均值项和损失函数项进行加权;采用带有方差减小的随机梯度方法(Stochastic Variance Reduced Gradient,SVRG)对优化模型进行求解,以加快收敛速度。所提基于最优间隔的AdaBoost v算法在样本权重更新公式中引入了一种新的自适应代价敏感函数,赋予少数类样本、误分类的少数类样本以及靠近决策边界的少数类样本更高的代价值;另外,通过结合新的权重公式以及引入给定精度参数v下的最优间隔的估计值,推导出新的基分类器权重策略,进一步提高了算法的分类精度。对比实验表明,在线性和非线性情况下,所提基于最优间隔的AdaBoost v算法在非平衡数据集上的分类精度优于其他算法,且能获得更大的最小间隔。 展开更多
关键词 非平衡数据 SVRG AdaBoost_(v) 最优间隔 自适应代价敏感函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部