A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images,...A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into different groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adaptively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the recovered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception.展开更多
The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions ...The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed, the body hull, and the part of the free surface excluding the body waterplane, and is subdivided into two subdomains according to the body geometry. The two subdomains are connected by a control surface in fluid. In each subdomain, the velocity potential is described by using the usual boundary integral representation involving Green functions. The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface. This multi-domain boundary element method (MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results. The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.展开更多
基金partially supported by the National Natural Science Foundation of China under Grants No. 61071146, No. 61171165the Natural Science Foundation of Jiangsu Province under Grant No. BK2010488+1 种基金sponsored by Qing Lan Project, Project 333 "The Six Top Talents" of Jiangsu Province
文摘A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into different groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adaptively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the recovered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception.
文摘The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed, the body hull, and the part of the free surface excluding the body waterplane, and is subdivided into two subdomains according to the body geometry. The two subdomains are connected by a control surface in fluid. In each subdomain, the velocity potential is described by using the usual boundary integral representation involving Green functions. The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface. This multi-domain boundary element method (MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results. The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.