期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于堆叠稀疏自编码的滚动轴承故障诊断 被引量:12
1
作者 侯荣涛 周子贤 +2 位作者 赵晓平 谢阳阳 王丽华 《轴承》 北大核心 2018年第3期49-54,60,共7页
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最... 针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。 展开更多
关键词 滚动轴承 深度学习 堆叠稀疏自编码算法 故障诊断
在线阅读 下载PDF
基于自编码特征提取及弹性学习的手写数字识别 被引量:1
2
作者 姜芳芳 何明一 王欣欣 《现代电子技术》 2014年第10期31-34,共4页
针对自编码算法提取输入特征能更好地发现样本间的相关性的优点,以自编码算法提取待识别样本特征作为多层前向网络的输入,以弹性BP算法训练网络,并用MNIST手写数字数据库样本测试。从正确率、拒识率、错误率和可靠率4项性能指标方面与... 针对自编码算法提取输入特征能更好地发现样本间的相关性的优点,以自编码算法提取待识别样本特征作为多层前向网络的输入,以弹性BP算法训练网络,并用MNIST手写数字数据库样本测试。从正确率、拒识率、错误率和可靠率4项性能指标方面与逐像素方法进行了综合对比测试。研究表明,采用自编码特征提取、多层前向神经网络作为分类器以及弹性BP算法进行训练的手写数字识别,具有更快的收敛速度和更高的识别可靠率。 展开更多
关键词 多层前向神经网络 自编码算法 弹性BP算法 MNIST数据库
在线阅读 下载PDF
基于深度自学习的图像哈希检索方法 被引量:10
3
作者 欧新宇 伍嘉 +1 位作者 朱恒 李佶 《计算机工程与科学》 CSCD 北大核心 2015年第12期2386-2392,共7页
基于监督学习的卷积神经网络被证明在图像识别的任务中具有强大的特征学习能力。然而,利用监督的深度学习方法进行图像检索,需要大量已标注的数据,否则很容易出现过拟合的问题。为了解决这个问题,提出了一种新颖的基于深度自学习的图像... 基于监督学习的卷积神经网络被证明在图像识别的任务中具有强大的特征学习能力。然而,利用监督的深度学习方法进行图像检索,需要大量已标注的数据,否则很容易出现过拟合的问题。为了解决这个问题,提出了一种新颖的基于深度自学习的图像哈希检索方法。首先,通过无监督的自编码网络学习到一个具有判别性的特征表达函数,这种方法降低了学习的复杂性,让训练样本不需要依赖于有语义标注的图像,算法被迫在大量未标注的数据上学习更强健的特征。其次,为了加快检索速度,抛弃了传统利用欧氏距离计算相似性的方法,而使用感知哈希算法来进行相似性衡量。这两种技术的结合确保了在获得更好的特征表达的同时,获得了更快的检索速度。实验结果表明,提出的方法优于一些先进的图像检索方法。 展开更多
关键词 自学习 感知哈希算法 栈式自编码算法 无监督学习 图像检索
在线阅读 下载PDF
基于机器学习和NetFPGA的智能高速入侵防御系统 被引量:7
4
作者 李艺颖 邓皓文 +1 位作者 王思齐 龙军 《信息网络安全》 2014年第2期12-19,共8页
当前网络安全面临着日益多样化的威胁和挑战。入侵防御系统作为一种新兴的、能够动态监视并及时阻断异常网络传输行为的网络安全设备,成为目前主要的研究方向。目前主流的入侵防御系统主要通过人工预设的入侵规则集合对网络流进行匹配... 当前网络安全面临着日益多样化的威胁和挑战。入侵防御系统作为一种新兴的、能够动态监视并及时阻断异常网络传输行为的网络安全设备,成为目前主要的研究方向。目前主流的入侵防御系统主要通过人工预设的入侵规则集合对网络流进行匹配来发现、处理入侵,这种方法效率低下、维护困难,且存在严重的处理速度与成本的矛盾。针对上述问题,文章提出了结合基于硬件的网络数据流高速捕获过滤、经典机器学习技术以及当前人工智能领域前沿的深度学习自编码技术的入侵检测新思路,实现了基于NetFPGA的智能、高速的网络入侵防御系统,并在测试中取得了优于其他同一成本水平入侵检测系统的结果。 展开更多
关键词 入侵检测系统 机器学习 自编码算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部