本文研究自组装单层保护金纳米团簇(C12 Au MPC)在常温下二氯甲烷溶液中的量子化电容充电效应.示差脉冲伏安曲线显示金核平均直径为2.0nm的C12 Au MPC在-0.6~0.6V电位区间内有9个明显的量子化电容充电峰,其双电层电容总的变化...本文研究自组装单层保护金纳米团簇(C12 Au MPC)在常温下二氯甲烷溶液中的量子化电容充电效应.示差脉冲伏安曲线显示金核平均直径为2.0nm的C12 Au MPC在-0.6~0.6V电位区间内有9个明显的量子化电容充电峰,其双电层电容总的变化趋势为在零电荷电位附近最小,随着电位正移或负移电容变大.而且随着该金核尺寸的增大,MPC双电层电容值也变大.展开更多
纳米柱GaN基多量子阱(MQW)拥有量子尺寸效应以及应变释放等特性,对于提高GaN基发光二极管(LED)的发光效率具有重要意义。采用快速热退火(RTA)形成的自组装Ni纳米颗粒作为刻蚀掩膜,利用电感耦合等离子体反应离子刻蚀(ICP-RIE)制...纳米柱GaN基多量子阱(MQW)拥有量子尺寸效应以及应变释放等特性,对于提高GaN基发光二极管(LED)的发光效率具有重要意义。采用快速热退火(RTA)形成的自组装Ni纳米颗粒作为刻蚀掩膜,利用电感耦合等离子体反应离子刻蚀(ICP-RIE)制备纳米柱InGa N/Ga N MQW。通过改变RTA温度发现在800℃以上才能有效形成Ni纳米颗粒掩膜。不同的ICP和射频(RF)功率条件下制备的纳米柱MQW光致发光强度相比于相同结构的平面MQW会发生显著变化。通过优化ICP-RIE的刻蚀条件,可以获得发光强度显著提高的纳米柱MQW结构。同时,纳米柱MQW中压电极化场的减弱会形成光致发光峰位蓝移。展开更多
文摘采用硼氢化钠还原金盐溶液,制备了晶粒尺寸为5 nm的金溶胶,以静电吸附的方法将Au纳米晶均匀地沉积在FTO玻璃基全纳米颗粒组装的SnO2/TiO2薄膜内,用SEM、EDS、TEM、光电流密度等方法对金修饰的全纳米颗粒组装SnO2/TiO2薄膜(Au-SnO2/TiO2)进行了表征。金纳米晶修饰后,光电流密度较相同厚度的SnO2/TiO2薄膜提高了128.3%,更加有利于光生电子的迁移。将Au-SnO2/TiO2薄膜用作染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)的阻挡层后,发现复合薄膜有效地阻止了导电玻璃基底上光生电子与电解液中I-3的复合,提高了DSSCs的光电转换效率。不同厚度的Au-SnO2/TiO2阻挡层复合薄膜中,含6层Au-SnO2/TiO2复合薄膜阻挡层的DSSCs最终效率为7.12%,较常用的Ti Cl4稀溶液预处理FTO玻璃的工艺(6.06%)提高了17.5%。
文摘本文研究自组装单层保护金纳米团簇(C12 Au MPC)在常温下二氯甲烷溶液中的量子化电容充电效应.示差脉冲伏安曲线显示金核平均直径为2.0nm的C12 Au MPC在-0.6~0.6V电位区间内有9个明显的量子化电容充电峰,其双电层电容总的变化趋势为在零电荷电位附近最小,随着电位正移或负移电容变大.而且随着该金核尺寸的增大,MPC双电层电容值也变大.
文摘纳米柱GaN基多量子阱(MQW)拥有量子尺寸效应以及应变释放等特性,对于提高GaN基发光二极管(LED)的发光效率具有重要意义。采用快速热退火(RTA)形成的自组装Ni纳米颗粒作为刻蚀掩膜,利用电感耦合等离子体反应离子刻蚀(ICP-RIE)制备纳米柱InGa N/Ga N MQW。通过改变RTA温度发现在800℃以上才能有效形成Ni纳米颗粒掩膜。不同的ICP和射频(RF)功率条件下制备的纳米柱MQW光致发光强度相比于相同结构的平面MQW会发生显著变化。通过优化ICP-RIE的刻蚀条件,可以获得发光强度显著提高的纳米柱MQW结构。同时,纳米柱MQW中压电极化场的减弱会形成光致发光峰位蓝移。