期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测
被引量:
1
1
作者
陈宇航
王渝红
+3 位作者
南璐
何川
王腾鑫
张敏
《现代电力》
北大核心
2025年第2期352-359,共8页
为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到...
为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到相似日集合,而后采用相似日数据对BP神经网络进行训练得到单点负荷值预测结果。其次,重点考虑历史数据的周期性和时序变化趋势,基于Prophet时序模型对历史负荷数据进行周期非线性拟合。通过历史数据拟合误差反馈,调整优化模型的关键超参数,最后基于误差倒数法组合得到短期负荷预测结果。以某地区电力负荷数据作为算例验证,结果表明所提的改进预测模型预测精度更高,且在克服历史数据缺失和拟合非工作日负荷曲线等方面具有优势。
展开更多
关键词
短期负荷预测
PROPHET
自组织映射-前馈
神经网络
时间序列
在线阅读
下载PDF
职称材料
题名
基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测
被引量:
1
1
作者
陈宇航
王渝红
南璐
何川
王腾鑫
张敏
机构
四川大学电气工程学院
国网山西电力科学研究院
出处
《现代电力》
北大核心
2025年第2期352-359,共8页
基金
国家电网公司总部科技项目(5100-202199274A-0-0-00)。
文摘
为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到相似日集合,而后采用相似日数据对BP神经网络进行训练得到单点负荷值预测结果。其次,重点考虑历史数据的周期性和时序变化趋势,基于Prophet时序模型对历史负荷数据进行周期非线性拟合。通过历史数据拟合误差反馈,调整优化模型的关键超参数,最后基于误差倒数法组合得到短期负荷预测结果。以某地区电力负荷数据作为算例验证,结果表明所提的改进预测模型预测精度更高,且在克服历史数据缺失和拟合非工作日负荷曲线等方面具有优势。
关键词
短期负荷预测
PROPHET
自组织映射-前馈
神经网络
时间序列
Keywords
short
-
term load forecasting
Prophet
SOM
-
BP
neural network
time series
分类号
TM73 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测
陈宇航
王渝红
南璐
何川
王腾鑫
张敏
《现代电力》
北大核心
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部