在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系...在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法.展开更多
将自组织映射网络(SOM)应用于化工过程故障数据的分类辨识,并采用粒子群优化(PSO)算法优化权重失真指数(LW D I),代替SOM的启发式训练算法,形成粒子群优化的SOM(PSO-SOM)分类算法。以某工厂甲醇合成反应器数据为研究对象,研究结果表明:...将自组织映射网络(SOM)应用于化工过程故障数据的分类辨识,并采用粒子群优化(PSO)算法优化权重失真指数(LW D I),代替SOM的启发式训练算法,形成粒子群优化的SOM(PSO-SOM)分类算法。以某工厂甲醇合成反应器数据为研究对象,研究结果表明:对比基本SOM算法,PSO-SOM算法对复杂的故障数据能够得到较优的分类辨识结果,对甲醇合成生产中的故障诊断有非常显著的指导作用。展开更多
文摘在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法.
文摘将自组织映射网络(SOM)应用于化工过程故障数据的分类辨识,并采用粒子群优化(PSO)算法优化权重失真指数(LW D I),代替SOM的启发式训练算法,形成粒子群优化的SOM(PSO-SOM)分类算法。以某工厂甲醇合成反应器数据为研究对象,研究结果表明:对比基本SOM算法,PSO-SOM算法对复杂的故障数据能够得到较优的分类辨识结果,对甲醇合成生产中的故障诊断有非常显著的指导作用。