期刊文献+
共找到247篇文章
< 1 2 13 >
每页显示 20 50 100
基于自监督学习的医学影像异常检测 被引量:1
1
作者 王楠 林绍辉 +4 位作者 齐福霖 陈玉珑 李珂 沈云航 马利庄 《计算机辅助设计与图形学学报》 北大核心 2025年第3期474-483,共10页
自监督学习(SSL)可以很好地捕捉关于不同概念的通用知识,有利于各种下游任务.针对自监督学习方法没有充分利用医学图像的多模态特征等问题,提出一种考虑医学图像多模态互补信息的自监督学习方法——SLeM.该方法首先将单个模态的图像均... 自监督学习(SSL)可以很好地捕捉关于不同概念的通用知识,有利于各种下游任务.针对自监督学习方法没有充分利用医学图像的多模态特征等问题,提出一种考虑医学图像多模态互补信息的自监督学习方法——SLeM.该方法首先将单个模态的图像均匀地划分为4个块,使用这些块随机组合构建多模态图像,不同的多模态图像被分配不同的标签,使得多模态特征可以通过分类任务来学习;为了提取不同大小肿瘤的特征,在学习到的多模态特征后加入上下文融合块;通过简单的微调将学到的特征转移到下游的多模态医学图像分割任务中.在公开数据集BraTS 2019和CHAOS上与JiGen,Taleb以及Supervoxel等具有代表性的多模态方法对比及消融实验结果表明,所提方法在整个肿瘤区域的分割准确度提升了2.03个百分点,在肿瘤核心区域的分割准确度提升了3.92个百分点,在肿瘤增强区域的分割准确度提升了1.75个百分点,并在视觉方面有较好的效果,明显优于其他方法. 展开更多
关键词 自监督学习 多模态融合 医学图像分割 特征提取 多尺度卷积
在线阅读 下载PDF
基于自监督学习的热成像与激光雷达融合深度补全方法 被引量:1
2
作者 于睿 马国梁 +1 位作者 郭健 许立松 《仪器仪表学报》 北大核心 2025年第1期170-181,共12页
深度补全是一种利用稀疏深度数据生成高分辨率稠密深度图的环境感知技术。然而,现有深度补全算法在昏暗或低照度场景中预测深度图的准确度不足,在极端光照条件下的应用效果较差。针对该问题,提出一种基于自监督深度学习的热成像与激光... 深度补全是一种利用稀疏深度数据生成高分辨率稠密深度图的环境感知技术。然而,现有深度补全算法在昏暗或低照度场景中预测深度图的准确度不足,在极端光照条件下的应用效果较差。针对该问题,提出一种基于自监督深度学习的热成像与激光雷达融合深度补全方法,用于训练网络模型在低光照或无光照的条件下生成像素级稠密的深度图。所提网络为编码器-解码器架构,以热图像和激光雷达的稀疏深度图作为编码器输入,在不同图像尺度上进行特征融合,解码器逐层对融合后的特征进行上采样和深度预测,生成稠密深度图。其次,设计了基于自注意力与跨注意力机制的多模态融合模块嵌入到编码器,通过自适应加权增强特征融合效果,提升预测稠密深度图的准确度。最后,构建了自监督学习框架,利用温度重建损失和稀疏深度损失进行自监督训练,无需额外的深度真值标注过程。在公开数据集上的实验验证表明,所提方法在不同光照条件下均能稳定生成稠密深度图。相较于现有深度补全基准方法,平均绝对误差在MS2和VIVID数据集上分别降低了44.49%和25.28%。在低光或无光环境下,通过融合热成像与激光雷达数据的互补优势,显著提高了深度预测的准确性和稳健性,为低光照场景下的环境感知提供了有效解决方案。 展开更多
关键词 深度图补全 多传感器数据融合 热成像 自监督学习 环境感知
在线阅读 下载PDF
基于最小先验知识的自监督学习方法
3
作者 朱俊屹 常雷雷 +3 位作者 徐晓滨 郝智勇 于海跃 姜江 《计算机应用》 北大核心 2025年第4期1035-1041,共7页
为了弥补有监督学习对监督信息要求过高的不足,提出一种基于最小先验知识的自监督学习方法。首先,基于数据的先验知识聚类无标签数据,或基于有标签数据的中心距离为无标签数据生成初始标签;其次,随机抽取赋予标签后的数据,并选择机器学... 为了弥补有监督学习对监督信息要求过高的不足,提出一种基于最小先验知识的自监督学习方法。首先,基于数据的先验知识聚类无标签数据,或基于有标签数据的中心距离为无标签数据生成初始标签;其次,随机抽取赋予标签后的数据,并选择机器学习方法建立子模型;再次,计算各个数据抽取的权重和误差,以求得数据平均误差作为各个数据集的数据标签度,并根据初始数据标签度设置迭代阈值;最后,比较迭代过程中数据标签度的大小和阈值决定是否达到终止条件。在10个UCI公开数据集上的实验结果表明,相较于无监督学习K-means等方法、有监督学习支持向量机(SVM)等算法和主流自监督学习TabNet(Tabular Network)等方法,所提方法在不平衡数据集不使用标签,或在平衡数据集上使用有限标签时仍可以取得较高的分类准确度。 展开更多
关键词 最小先验知识 自监督学习 机器学习 数据标签度 迭代阈值
在线阅读 下载PDF
基于时频自监督学习的弱标记滚动轴承故障诊断研究 被引量:1
4
作者 邢海波 李杰 《现代制造工程》 北大核心 2025年第1期148-155,共8页
针对数据样本弱标记下的滚动轴承故障诊断问题,提出了一种基于时频自监督学习的新方法,在无故障标记样本中提取潜藏故障特征。该方法首先通过构建时域编码器和频域编码器来分别提取时域和频域的特征表示;然后设计了一种时频自监督学习... 针对数据样本弱标记下的滚动轴承故障诊断问题,提出了一种基于时频自监督学习的新方法,在无故障标记样本中提取潜藏故障特征。该方法首先通过构建时域编码器和频域编码器来分别提取时域和频域的特征表示;然后设计了一种时频自监督学习模型来增强时域与频域特征之间的相互预测能力;最后为了优化该模型的学习过程,设计了一种新型交叉相关矩阵损失函数,有效提升了模型对复杂故障模式的捕捉能力。采用凯斯西储大学轴承故障公开数据集和帕德博恩大学轴承公开数据集进行方法验证,实验结果表明,该方法在少数故障标签(5%故障标记)的数据下取得了优异的诊断效果。 展开更多
关键词 滚动轴承 故障诊断 时频域特征 自监督学习 弱标记样本
在线阅读 下载PDF
基于自监督学习和二阶表示的小样本图像分类
5
作者 李兆亮 贾令尧 +1 位作者 张冰冰 李培华 《计算机学报》 北大核心 2025年第3期586-601,共16页
小样本图像分类旨在利用少量的标注样本实现对未见类别的预测。最近的研究表明,预训练策略和图像表示方法在该任务中发挥着关键作用。然而,这些方法的应用仍面临两个主要挑战:第一,自监督学习在小样本分类的预训练阶段尚未得到充分的探... 小样本图像分类旨在利用少量的标注样本实现对未见类别的预测。最近的研究表明,预训练策略和图像表示方法在该任务中发挥着关键作用。然而,这些方法的应用仍面临两个主要挑战:第一,自监督学习在小样本分类的预训练阶段尚未得到充分的探索;第二,二阶表示在不同粒度的小样本任务中的作用尚不明确,制约了其在复杂任务中的应用。针对上述问题,本文首先提出了一个多任务协同优化的预训练方法,实现了对比式自监督、生成式自监督和有监督学习的联合训练。该方法旨在促进模型学习具有迁移性的特征,从而提升模型的泛化性能。其次,本文利用紧致的双线性池化对模型进行微调,以获取更具分辨力的二阶表示,从而进一步增强模型的非线性建模能力。最后,本文提出了一种基于类间相似关系的任务难度指标,用于量化小样本任务的分类粒度,并通过线性探测分析系统地研究了二阶表示在粗细粒度不同的小样本任务中的表现。实验表明,多任务协同的预训练有效提高了模型的泛化性能,并且不同的分支任务呈现相互促进的效果;在更加困难的细粒度任务中,二阶表示相对于一阶表示展现出更强的线性可分性,这为一阶和二阶表示在不同场景中的应用提供了有益参考。本文通过广泛的消融实验深入评估了每个关键设计的贡献。与当前最先进的方法相比,本文方法在miniImageNet和CUB数据集的1-shot/5-shot分类任务中分别取得0.66%/0.53%和3.12%/0.98%的提升,在tiered ImageNet数据集的5-shot分类任务中取得可比结果(87.19%vs.87.31%),在跨域数据集miniImageNet→CUB、miniImageNet→Aircraft和miniImageNet→Cars中分别取得1.25%、1.96%和4.34%的提升,验证了本文方法的有效性。 展开更多
关键词 小样本图像分类 自监督学习 监督学习 二阶表示 任务难度指标
在线阅读 下载PDF
基于联合自监督学习的多模态融合推荐算法
6
作者 吴宗航 张东 李冠宇 《计算机应用》 北大核心 2025年第6期1858-1868,共11页
针对多模态推荐算法的数据稀疏性问题,以及现有的自监督学习(SSL)算法往往集中在对数据集中单一特征的SSL上,而忽视了多特征联合学习的可能性的问题,提出一种基于联合SSL的多模态融合推荐算法SFELMMR(SelF supErvised Learning for Mult... 针对多模态推荐算法的数据稀疏性问题,以及现有的自监督学习(SSL)算法往往集中在对数据集中单一特征的SSL上,而忽视了多特征联合学习的可能性的问题,提出一种基于联合SSL的多模态融合推荐算法SFELMMR(SelF supErvised Learning for MultiModal Recommendation)。首先,整合并优化现有的SSL策略,以通过联合学习不同模态的数据特征,显著增强数据的表示能力,从而缓解数据稀疏性的问题;其次,通过融合全局视角下的深层次项目关系和局部视角下的直接相互作用,设计一种构造多模态潜在语义图的方法,使算法能更精准地捕捉项目间的复杂联系;最后,在3个数据集上进行实验。结果表明,与现有算法中表现最佳的多模态推荐算法相比,所提算法在多个推荐性能指标上取得了显著提升。具体地,所提算法的Recall@10分别提升了5.49%、2.56%、2.99%,NDCG@10分别提升了1.17%、1.98%、3.52%,Precision@10分别提升了4.69%、2.74%、1.22%,Map@10分别提升了0.81%、1.59%、3.11%。此外,通过对所提算法进行消融实验,验证了该算法的有效性。 展开更多
关键词 推荐系统 多模态 自监督学习 图卷积神经网络 特征融合
在线阅读 下载PDF
融合自监督学习与主动学习的DNS隧道检测方法
7
作者 熊威 关洪涛 《高技术通讯》 北大核心 2025年第5期461-471,共11页
针对监督学习方法采集攻击样本困难以及无监督学习方法检测精度不足的问题,提出一种融合自监督学习与主动学习的域名系统(domain name system,DNS)隧道检测方法。该方法采用异常检测框架,无需获取攻击样本,同时,通过自监督学习引入训练... 针对监督学习方法采集攻击样本困难以及无监督学习方法检测精度不足的问题,提出一种融合自监督学习与主动学习的域名系统(domain name system,DNS)隧道检测方法。该方法采用异常检测框架,无需获取攻击样本,同时,通过自监督学习引入训练指导过程,通过主动学习引入反馈调节过程,显著提升了检测精度。构建基于Transformer架构的自编码器,通过对正常样本特征进行自监督学习,实现了DNS数据包级别的异常检测。以此为基础,将主动学习方法应用于反馈引导的孤立森林(feedback-guided isolated forest,FBIF),实现了DNS交互流级别的异常检测,将检出的异常流视为与隧道攻击活动相关。实验结果表明,该检测方法在无需获取攻击样本的前提下,能准确检测出多种类型的隧道攻击,且在资源消耗方面具备高可扩展性。 展开更多
关键词 域名系统隧道检测 自监督学习 主动学习 TRANSFORMER 自编码器 反馈引导的孤立森林
在线阅读 下载PDF
基于数据-物理模型融合驱动的原始-对偶自监督学习最优潮流求解方法
8
作者 翁宗龙 李滨 +2 位作者 肖佳文 张佳乐 白晓清 《电力自动化设备》 北大核心 2025年第4期202-208,共7页
随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。... 随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。建立原始神经网络和对偶神经网络,并采用类增广拉格朗日的方法进行联合训练。原始神经网络仅预测所有节点的电压,在该训练网络中内嵌交流潮流方程,以计算发电机的有功和无功出力;对偶神经网络预测拉格朗日乘子估计值。仿真结果表明,所提方法不仅关注大量数据的底层特征,还优化解的质量,有助于更好地探索数据的结构和特性。同时,该方法无须预处理标签样本数据集,其计算精度和可信度优于数据驱动方法,其计算速度比传统物理模型驱动方法快数十倍。 展开更多
关键词 数据-物理融合驱动 类增广拉格朗日 原始-对偶自监督学习 最优潮流 内嵌交流潮流方程
在线阅读 下载PDF
自监督学习结合对抗迁移的跨工况轴承故障诊断 被引量:2
9
作者 温江涛 刘仲雨 +1 位作者 孙洁娣 时培明 《计量学报》 CSCD 北大核心 2024年第9期1360-1369,共10页
轴承智能故障诊断应用中,由于实际工况复杂多变,极难获得足够的真实故障数据,且目标域和源域信号存在较大差异,导致深度模型的跨工况迁移识别也出现特征提取及分类困难、模型泛化性弱。考虑到目标域存在大量无标签数据,引入无监督思想,... 轴承智能故障诊断应用中,由于实际工况复杂多变,极难获得足够的真实故障数据,且目标域和源域信号存在较大差异,导致深度模型的跨工况迁移识别也出现特征提取及分类困难、模型泛化性弱。考虑到目标域存在大量无标签数据,引入无监督思想,提出基于自监督学习结合对抗迁移的改进方法。首先根据信号本身特点创建辅助任务,对大量无标签数据学习,建立源域与目标域故障类别之间的内在联系;再通过对抗域适应和联合最大平均差异将源域知识迁移到目标域中,结合辅助任务优化两域差异,最终实现目标域准确的故障分类。用2个公开的轴承数据集上验证了所提方法的性能,实验结果表明,所提方法的故障诊断识别准确率在多数情况下均高于98%。 展开更多
关键词 轴承故障诊断 自监督学习 跨工况 对抗迁移
在线阅读 下载PDF
融合多个性化桥和自监督学习的跨域推荐算法 被引量:2
10
作者 王永贵 刘丹妮 《计算机科学与探索》 CSCD 北大核心 2024年第7期1792-1805,共14页
针对跨域推荐系统中目标域中项目交互较少的用户,提出一种融合多个性化桥和自监督学习的跨域推荐算法(MS-PTUPCDR)。首先,在目标域加入变分二部图编码器,使用变分推理框架生成潜在变量,目标域用户表示聚合其同构邻居信息。其次,将用户... 针对跨域推荐系统中目标域中项目交互较少的用户,提出一种融合多个性化桥和自监督学习的跨域推荐算法(MS-PTUPCDR)。首先,在目标域加入变分二部图编码器,使用变分推理框架生成潜在变量,目标域用户表示聚合其同构邻居信息。其次,将用户单一偏好桥扩展为用户多个性化偏好桥,将用户在多源域可转移的用户因子转移到目标域,在目标域加入多头注意力机制融合分别来自不同源域转换的用户潜在因子作为自监督学习的辅助任务。最后,在目标域中将聚合用户邻居因子和融合后的用户多源域转移用户因子进行自监督学习。在目标域通过用户自监督学习后的用户因子和目标域项目因子点积进行目标域项目评分预测。算法在Amazon和MovieLens两个数据集上进行实验,结果表明算法在MAE和RMSE两个评价指标上优于对比基线算法,在两个数据集上与最优对比基线算法相比,MAE平均提升1.96%,RMSE平均提升1.92%,验证了算法的有效性。 展开更多
关键词 跨域推荐 用户多个性化偏好桥 多头注意力机制 自监督学习 变分二部图编码器
在线阅读 下载PDF
基于自监督学习PBS-Net和通道提纯的信息隐藏主动防御方法
11
作者 马媛媛 赵颖澳 +2 位作者 徐富永 张倩倩 辛现伟 《计算机应用研究》 CSCD 北大核心 2024年第12期3822-3828,共7页
信息隐藏主动防御技术作为信息隐藏的对立面,能够阻断非法隐蔽通信的传输。然而,现有的主动防御方法过度依赖载体-载密图像对,无法对未知载密图像主动防御,使其防御的误码率在实际社交网络中降低。针对上述问题,为了在通信双方毫无察觉... 信息隐藏主动防御技术作为信息隐藏的对立面,能够阻断非法隐蔽通信的传输。然而,现有的主动防御方法过度依赖载体-载密图像对,无法对未知载密图像主动防御,使其防御的误码率在实际社交网络中降低。针对上述问题,为了在通信双方毫无察觉的情况下彻底阻断秘密信息的传输,提出一种自监督学习盲点网络和通道提纯的主动防御方法。首先,通过像素混洗采样策略降低载密图像中像素之间的空间相关性,将学习方式从监督学习改进为自监督学习;其次,中心掩码卷积和空洞卷积残差块用于消除载密图像中的秘密信息;最后,设计通道提纯模块改善图像纹理细节。该方法无须任何信息隐藏方案的先验知识以及人工操作,使得在主机接收到可疑图像之前消除秘密信息,阻断社交网络中的隐蔽通信。实验结果表明,该方法具有高秘密信息破坏效果和高图像质量,能够达到100%的防御成功率,阻断社交网络中的隐蔽通信。同时,在不同负载率的数据集下,该方法与SC-Net和AO-Net进行对比,在秘密信息消除方面各提升14.14%和2.91%,在图像质量方面各提升9.14%和43.34%。 展开更多
关键词 图像隐写分析 主动防御 自监督学习
在线阅读 下载PDF
基于3D注意力卷积与自监督学习的脑疾病分类方法
12
作者 冀俊忠 于乐 雷名龙 《北京工业大学学报》 CAS CSCD 北大核心 2024年第3期307-315,共9页
为了提升现有脑疾病分类方法提取三维空间特征的能力,提出一种融合3D注意力卷积与自监督学习的分类模型。首先,提出一种基于残差结构的3D注意力卷积神经网络来提取空间特征,利用3D注意力机制区分体素数据中不同空间位置的重要性;其次,... 为了提升现有脑疾病分类方法提取三维空间特征的能力,提出一种融合3D注意力卷积与自监督学习的分类模型。首先,提出一种基于残差结构的3D注意力卷积神经网络来提取空间特征,利用3D注意力机制区分体素数据中不同空间位置的重要性;其次,利用空间特征构建一个基于自监督学习的多任务学习框架,通过基于空间连续性的自监督辅助任务来进一步挖掘体素的空间依赖关系;最后,通过辅助任务与目标分类任务的联合训练优化神经网络参数,进而提升分类模型的性能。在ABIDE-Ⅰ和ABIDE-Ⅱ数据集上的实验结果表明,所提方法具有优异的分类性能,分类结果也具备良好的可解释性。 展开更多
关键词 脑疾病分类 体素数据 空间特征 三维卷积神经网络 自监督学习 注意力机制
在线阅读 下载PDF
基于自监督学习的IRS辅助矿井通信系统信道估计方法
13
作者 王安义 李新宇 +1 位作者 李明珠 李婼嫚 《工矿自动化》 CSCD 北大核心 2024年第8期144-150,共7页
针对矿井复杂环境导致的多径衰落、非视距通信及真实标签获取困难的问题,提出一种基于自监督学习(SSL)的智能反射面(IRS)辅助矿井通信系统信道估计方法。根据井下Nakagami-g衰落信道模型和IRS信号传输模型搭建井下通信系统模型,通过IRS... 针对矿井复杂环境导致的多径衰落、非视距通信及真实标签获取困难的问题,提出一种基于自监督学习(SSL)的智能反射面(IRS)辅助矿井通信系统信道估计方法。根据井下Nakagami-g衰落信道模型和IRS信号传输模型搭建井下通信系统模型,通过IRS技术解决多径衰落和非视距通信问题。通过最小二乘(LS)算法进行初步信道估计,再采用SSL框架下的八度卷积(OCT)神经网络优化信道估计结果。OCT直接对高频分量和低频分量进行处理,能同时捕捉信道的粗糙特征和细微差别,提供全面的信道信息,从而更准确地估计信道状态;SSL算法使用接收信号及其带噪版本作为训练数据,通过未标注数据的内在结构提升IRS辅助信道估计的精度和效率,从而降低对人工标签的依赖。仿真结果表明:①引入IRS技术能有效降低信道估计误差。②OCT神经网络的损失值明显低于CNN,数据拟合效果更好;OCT神经网络计算效率高,可提高通信系统信道估计的整体性能;在计算资源有限的环境下,OCT神经网络可保持较低参数量和内存使用量。③SSL算法在所有信噪比条件下均能保持较低的归一化均方误差,验证了其在信道估计中的高效性和鲁棒性。④基于SSL的IRS辅助矿井通信系统信道估计方法在大规模网络中具有较好的扩展性和鲁棒性。 展开更多
关键词 矿井通信 信道估计 井下智能反射面 自监督学习 八度卷积神经网络 Nakagami-g模型
在线阅读 下载PDF
夜间动物图像自监督学习增强与检测方法 被引量:3
14
作者 王驰 沈晨 +3 位作者 黄庆 张国峰 卢汉 陈金波 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第5期1087-1097,共11页
为了解决动物夜间实时监测所面临的图像曝光度低、对比度低、特征提取困难等问题,通过研究轻量化自监督深度神经网络Zero-Denoise和改进型YOLOv8模型,来进行夜间动物目标的图像增强与精准识别。首先,通过轻量化的PDCE-Net进行第一阶段... 为了解决动物夜间实时监测所面临的图像曝光度低、对比度低、特征提取困难等问题,通过研究轻量化自监督深度神经网络Zero-Denoise和改进型YOLOv8模型,来进行夜间动物目标的图像增强与精准识别。首先,通过轻量化的PDCE-Net进行第一阶段快速增强。提出了一个新的光照损失函数,并利用参数可调的Gamma校正原图与快速增强图,在基于Retinex原理和最大熵理论的PRED-Net中进行第二阶段的重增强。然后,改进YOLOv8模型,并对重增强后的图像进行目标识别。最后,在LOL数据集(low-light dataset)与自建动物数据集进行实验分析,验证Zero-Denoise网络和改进型YOLOv8模型对于夜间动物目标监测的改善效果。试验结果显示,Zero-Denoise的mAP值网络在LOL数据集上的PSNR、SSIM与MAE指标达到28.53、0.76、26.15,结合改进型YOLOv8在自建动物数据集上的mAP值比YOLOv8基线模型提升了7.1%。使用Zero-Denoise和改进型YOLOv8能获得良好的夜间动物目标图像。结果表明所提方法可用于夜间动物目标的精确监测。 展开更多
关键词 夜间动物监测 低光增强 自监督学习 RETINEX 低光去噪
在线阅读 下载PDF
基于图结构聚类的自监督学习疾病诊断方法 被引量:2
15
作者 张正康 杨丹 +1 位作者 聂铁铮 寇月 《计算机工程》 CAS CSCD 北大核心 2024年第7期360-371,共12页
图自监督学习方法近年来被应用于疾病诊断任务中以缓解医疗标签信息缺乏和人工标注问题。然而,图自监督学习的性能主要依赖于高质量的正样本和负样本,这限制了疾病诊断的灵活性和泛用性。此外,在构建医疗异构属性图时没有充分利用病人... 图自监督学习方法近年来被应用于疾病诊断任务中以缓解医疗标签信息缺乏和人工标注问题。然而,图自监督学习的性能主要依赖于高质量的正样本和负样本,这限制了疾病诊断的灵活性和泛用性。此外,在构建医疗异构属性图时没有充分利用病人的多模态数据,影响了疾病诊断的性能。提出一个基于医疗异构属性图结构聚类的自监督学习疾病诊断框架SC4DD。该框架利用病人的结构化数据和非结构化临床文本摘要构建医疗异构属性图,通过图上的结构聚类算法生成节点的伪标签。考虑到不同元路径对学习病人嵌入表示的重要性以及不同模态医疗数据对疾病诊断结果的影响程度,引入注意力机制的异构图神经网络作为编码器,伪标签作为自监督信号辅助编码器学习注意力系数和病人嵌入表示。在MIMIC-Ⅲ数据集上的实验结果表明,SC4DD优于传统基线方法,能够有效提高疾病诊断的性能。其中,相较于性能最优的基线方法HeCo,SC4DD在2%、3%、4%标记节点下的宏平均F1值分别提高了1.46%、0.97%、0.94%,微平均F1值分别提高了0.91%、0.84%、0.52%。 展开更多
关键词 疾病诊断 电子病历 自监督学习 图神经网络 医疗异构属性图
在线阅读 下载PDF
基于掩码自监督学习的点云动作识别方法 被引量:1
16
作者 何允栋 李平 平晨昊 《计算机科学与探索》 CSCD 北大核心 2024年第12期3235-3246,共12页
点云动作识别方法可以提供精准的三维动作监测与识别服务,在智能交互、智能安防和医疗健康等领域具有广阔应用前景。现有方法通常利用大量标注的点云数据训练模型,但点云视频包含大量的三维坐标,精准标注点云非常昂贵,同时点云视频高度... 点云动作识别方法可以提供精准的三维动作监测与识别服务,在智能交互、智能安防和医疗健康等领域具有广阔应用前景。现有方法通常利用大量标注的点云数据训练模型,但点云视频包含大量的三维坐标,精准标注点云非常昂贵,同时点云视频高度冗余,点云信息在视频中分布不均,这些问题都增大了标注的难度。为解决上述问题并获得更好的点云动作识别性能,提出一种无需人工标注即可捕获点云视频时空结构的掩码自监督动作识别方法MSTD-Transformer。将点云视频划分为点管并根据重要性进行自适应视频级掩码,通过点云重构和运动预测双流自监督学习点云视频的外观和运动特征。为了更好地捕获运动信息,MSTDTransformer从点云关键点的位移中提取动态注意力并嵌入Transformer,使用双分支结构进行差异化学习,分别捕获运动信息和全局结构。在标准数据集MSRAction-3D上的实验结果表明,提出的方法对24帧点云视频动作识别准确率为96.17%,较现有最好方法提高2.09个百分点,证实了掩码策略和动态注意力的有效性。 展开更多
关键词 动作识别 点云 自监督学习 掩码 注意力机制
在线阅读 下载PDF
基于掩码自监督学习的滚动轴承冲击特征提取方法
17
作者 李可轩 林慧斌 丁康 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期166-173,共8页
现有的机械故障智能诊断方法普遍需要大量的可靠样本作为模型的训练支撑,然而,实际应用场景通常缺少标签数据。针对这一难题,提出一种基于掩码自监督学习的滚动轴承局部故障冲击特征提取方法。利用随机掩码对原始轴承故障信号进行布尔运... 现有的机械故障智能诊断方法普遍需要大量的可靠样本作为模型的训练支撑,然而,实际应用场景通常缺少标签数据。针对这一难题,提出一种基于掩码自监督学习的滚动轴承局部故障冲击特征提取方法。利用随机掩码对原始轴承故障信号进行布尔运算,得到用于特征提取训练的自监督样本;将掩码处理后的信号输入所搭建的掩码自监督学习网络中,建立包含网络输出与输入峭度差信息的损失函数,对网络进行基于随机掩码自监督学习的多轮训练,使网络获得从原始故障信号中提取故障冲击特征的能力。仿真信号分析表明,所提方法在掩码遮盖比例为95%、训练轮次为250时,能够以96.68%的重构精度重建原始信号中的冲击序列。滚动轴承故障实验进一步表明,所提方法在无需额外训练数据的前提下能有效地从含噪信号中提取故障冲击序列,在效果均优于对比方法最优结果的前提下,所提方法计算耗时低于20 s,远优于MCKD类方法,具有较好的应用价值。 展开更多
关键词 掩码 自监督学习 滚动轴承 卷积神经网络
在线阅读 下载PDF
心电领域中的自监督学习方法综述 被引量:2
18
作者 韩涵 黄训华 +3 位作者 常慧慧 樊好义 陈鹏 陈姞伽 《计算机科学与探索》 CSCD 北大核心 2024年第7期1683-1704,共22页
深度学习因其强大的数据表征能力已被广泛应用于心电(ECG)信号分析领域,但有监督方法的训练过程需要大量标签,而心电数据标注通常是耗时且成本高昂的。且有监督方法受限于训练集中有限的数据类型,泛化性能有限。因此,如何利用海量无标... 深度学习因其强大的数据表征能力已被广泛应用于心电(ECG)信号分析领域,但有监督方法的训练过程需要大量标签,而心电数据标注通常是耗时且成本高昂的。且有监督方法受限于训练集中有限的数据类型,泛化性能有限。因此,如何利用海量无标记心电信号进行数据挖掘和通用特征表示已成为亟待解决的问题。自监督学习(SSL)通过预先设置的代理任务从无标签数据中学习泛化特征来提升模型的特征表示能力,是一种解决心电数据标注缺失问题和提升模型迁移能力的有效途径。然而,现有的自监督学习综述大都专注于图像或时序信号领域,针对心电领域的自监督学习综述相对缺乏。为了填补这一空白,全面回顾了用于心电领域的先进的自监督学习方法。首先,从对比式和预测式两种学习范式出发对心电自监督学习方法进行了系统的总结与分类,阐述了不同类别方法的基本原理,细致分析了各个方法的特点,指出了各个方法的优势以及局限性。然后,归纳汇总了心电自监督学习中常用的数据集以及应用场景,总结了常用于心电领域的数据增强方法,为后续研究提供了系统性的总结参考。最后,深入讨论了当前自监督学习在心电领域中的挑战,并对未来心电自监督学习的发展方向进行了展望,为后续心电领域的自监督学习研究提供了指导。 展开更多
关键词 心电(ECG) 特征表示 深度学习 自监督学习
在线阅读 下载PDF
自监督学习下小样本番茄叶片病害检测
19
作者 李显娜 吴强 +1 位作者 张一丹 周康 《中国农机化学报》 北大核心 2024年第7期172-179,共8页
番茄叶片病害的快速定位与精准识别有助于合理使用杀虫剂,进而保障番茄的质量与产量。针对现有番茄叶片病害检测方法检测性能不佳的问题,提出一种自监督下的小样本番茄叶片病害检测方法。首先,利用一组共享权重的主干网络提取番茄叶片... 番茄叶片病害的快速定位与精准识别有助于合理使用杀虫剂,进而保障番茄的质量与产量。针对现有番茄叶片病害检测方法检测性能不佳的问题,提出一种自监督下的小样本番茄叶片病害检测方法。首先,利用一组共享权重的主干网络提取番茄叶片在视觉空间中的语义特征;然后,将视觉语义特征作为深度自编码网络的输入,通过计算编码压缩后的特征与原始特征间的对比损失优化特征编码网络;最后,利用编码压缩后的特征指导番茄叶片的未知病害定位与识别。此外,为获得更鲁棒的指导特征集,设计一种双损失的优化策略。通过在自建的番茄病害叶片数据集和开源数据集上进行测试试验,所提出模型分别在自建和开源数据集上实现0.946 2和0.963 9的识别精准率,优于当前经典的目标检测方法。 展开更多
关键词 番茄叶片病害检测 自监督学习 自编码网络 双损失 语义特征
在线阅读 下载PDF
基于跨域Mixup和自监督学习的少样本高光谱图像分类 被引量:1
20
作者 王岩 张晨阳 李照奎 《激光杂志》 北大核心 2024年第12期99-105,共7页
针对目标域标记样本稀缺引起的模型泛化性能不佳问题,提出了一种基于跨域Mixup和自监督学习的少样本高光谱图像分类方法。首先,利用少样本学习从源域提取更有利于目标域分类的元知识。其次,将Mixup技术应用到少样本学习中,将源域和目标... 针对目标域标记样本稀缺引起的模型泛化性能不佳问题,提出了一种基于跨域Mixup和自监督学习的少样本高光谱图像分类方法。首先,利用少样本学习从源域提取更有利于目标域分类的元知识。其次,将Mixup技术应用到少样本学习中,将源域和目标域的查询集进行特征级Mixup,通过源域数据扩展目标域数据的分布,增加目标域数据的多样性,从而提高模型的泛化性能。最后,通过目标域自监督学习来约束少样本学习过程,以获取更鲁棒的特征表示,进而缓解模型的过拟合问题。在两个公共高光谱数据集上进行了大量实验,与现有主流方法相比,所提方法平均准确率分别提升了3.2%和3.6%以上。 展开更多
关键词 高光谱图像 跨域分类 少样本学习 Mixup 自监督学习
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部