期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
双域感知下多方显式信息协同的场景端到端文本识别
1
作者 陈平平 林虎 +1 位作者 陈宏辉 谢肇鹏 《电子学报》 北大核心 2025年第3期974-985,共12页
在复杂自然场景的端到端文本识别中,由于文本和背景难以区分,文本检测的位置信息和识别的语义信息不匹配,无法有效利用检测和识别之间的相关性.针对该问题,本文提出双域感知下多方显式信息协同的自然场景端到端文本识别方法(Multi-party... 在复杂自然场景的端到端文本识别中,由于文本和背景难以区分,文本检测的位置信息和识别的语义信息不匹配,无法有效利用检测和识别之间的相关性.针对该问题,本文提出双域感知下多方显式信息协同的自然场景端到端文本识别方法(Multi-party Synergetic explicit Information with Dual-domain Awareness text spotting,MSIDA),通过强化文本区域特征和边缘纹理,利用文本检测和识别特征之间的协同作用提高端到端文本识别性能.首先,设计融合文本空间和方向信息的双域感知模块(Dual-Domain Awareness,DDA),增强文本实例的视觉特征信息;其次,提出多方显式信息协同模块(Multi-party Explicit Information Synergy,MEIS)提取编码特征中的显式信息,通过匹配对齐用于检测和识别的位置、分类和字符多方信息生成候选文本实例;最后,协同特征通过解码器引导可学习的查询序列获得文本检测和识别的结果 .相比最新的DeepSolo(Decoder with explicit points Solo)方法,在Total-Text、ICDAR 2015和CTW1500数据集上,MSIDA模型的准确率分别提升0.8%、0.8%和0.4%.代码和数据集在https://github.com/msida2024/MSIDA.git可以获取. 展开更多
关键词 计算机视觉 场景文本图像 文本检测 端到端文本识别 特征信息关联
在线阅读 下载PDF
深度学习的自然场景文本识别方法综述 被引量:4
2
作者 曾凡智 冯文婕 周燕 《计算机科学与探索》 CSCD 北大核心 2024年第5期1160-1181,共22页
自然场景文本识别在学术研究和实际应用中具有重要价值,已经成为计算机视觉领域的研究热点之一。然而,识别过程存在文本风格多样、背景环境复杂等挑战,导致识别效率和准确率不佳。传统的基于手工设计特征文本识别方法由于其有限的表示能... 自然场景文本识别在学术研究和实际应用中具有重要价值,已经成为计算机视觉领域的研究热点之一。然而,识别过程存在文本风格多样、背景环境复杂等挑战,导致识别效率和准确率不佳。传统的基于手工设计特征文本识别方法由于其有限的表示能力,不足以有效地应对复杂的自然场景文本识别任务。近年来,采用深度学习方法在自然场景文本识别中取得了重大进展,系统地梳理了近年来相关研究工作。首先,根据是否需要对单字符进行分割,将自然场景文本识别方法分为基于分割与无需分割的方法,再根据其技术实现特点将无需分割的方法进行细分,并对各类最具有代表性的方法工作原理进行了阐述。然后,介绍了当前常用数据集以及评价指标,并在数据集上对各类方法进行了性能对比,从多个方面讨论了各类方法的优势与局限性。最后,指出基于深度学习的自然场景文本识别研究存在的不足和难点,对其未来的发展趋势进行了展望。 展开更多
关键词 文本识别 深度学习 自然场景
在线阅读 下载PDF
改进FCENet的自然场景文本检测算法
3
作者 周燕 廖俊玮 +2 位作者 刘翔宇 周月霞 曾凡智 《计算机工程与应用》 CSCD 北大核心 2024年第3期228-236,共9页
针对自然场景文本检测中由于背景复杂、尺度多变、形状弯曲等造成的检测难题,提出了一种改进FCENet(Fourier contour embedding network)的场景文本检测算法。该算法基于FCENet并引入了多尺度残差特征增强模块和多尺度注意力特征融合模... 针对自然场景文本检测中由于背景复杂、尺度多变、形状弯曲等造成的检测难题,提出了一种改进FCENet(Fourier contour embedding network)的场景文本检测算法。该算法基于FCENet并引入了多尺度残差特征增强模块和多尺度注意力特征融合模块。多尺度残差特征增强模块作为骨干网络顶层的残差分支,增强了特征金字塔结构自上而下的高层语义信息流动,提高了文本像素分类能力,有效减少误检现象。多尺度注意力特征融合模块使不同语义和尺度的特征能够更好地融合,结合自底向上的特征融合网络,有效避免文本过度分割并提高了弯曲文本的检测能力。实验结果表明,该方法在弯曲文本数据集CTW1500和Total-Text上的综合指标F值分别达到了86.2%和86.5%,相比原算法FCENet分别提升了1.1和0.7个百分点。 展开更多
关键词 自然场景文本检测 特征融合 特征增强 注意力机制 FCENet
在线阅读 下载PDF
基于多头注意力机制与长短期记忆网络的自然场景文本识别
4
作者 姚炜 冯宪伟 《传感技术学报》 CSCD 北大核心 2024年第12期2107-2112,共6页
随着计算机视觉和自然语言处理技术的不断发展,自然场景文本检测与识别技术已成为计算机视觉领域的研究热点之一。提出了一种基于多头注意力机制与长短期记忆网络(LSTM)的自然场景文本检测与识别方法。该方法通过结合目标检测算法和序... 随着计算机视觉和自然语言处理技术的不断发展,自然场景文本检测与识别技术已成为计算机视觉领域的研究热点之一。提出了一种基于多头注意力机制与长短期记忆网络(LSTM)的自然场景文本检测与识别方法。该方法通过结合目标检测算法和序列识别算法,利用多头注意力机制对图像中的文本区域进行精确的定位和特征提取,进而通过LSTM网络对提取的特征进行编码和解码,实现对自然场景中文本的准确识别。在文本检测阶段,采用基于深度学习的目标检测算法,结合多头注意力机制,通过并行计算多个独立的注意力头来捕获图像中不同尺度和方向上的文本信息,提高文本检测的准确性和鲁棒性。在文本识别阶段,利用LSTM网络对检测到的文本区域进行序列建模,通过编码和解码过程将图像中的文本信息转化为可读的字符序列。实验结果表明,所提出的方法在自然场景文本检测与识别任务上取得了优异的性能。与现有的方法相比,所提出的方法在准确性和鲁棒性方面均有所提升,尤其是在处理复杂背景和多样化文本时表现出更好的适应性。 展开更多
关键词 文本检测识别 多头注意力机制 自然场景文本 长短期记忆网络
在线阅读 下载PDF
基于深度学习的自然场景文本检测与识别综述 被引量:45
5
作者 王建新 王子亚 田萱 《软件学报》 EI CSCD 北大核心 2020年第5期1465-1496,共32页
自然场景文本检测与识别研究对于从场景中获取信息有重要意义,而深度学习技术有助于提高文本检测与识别的能力.主要对基于深度学习的自然场景文本检测与识别方法和其研究进展进行整理分类、分析和总结.首先论述自然场景文本检测与识别... 自然场景文本检测与识别研究对于从场景中获取信息有重要意义,而深度学习技术有助于提高文本检测与识别的能力.主要对基于深度学习的自然场景文本检测与识别方法和其研究进展进行整理分类、分析和总结.首先论述自然场景文本检测与识别的相关研究背景及主要技术研究路线;然后,根据自然场景文本信息处理的不同阶段,进一步介绍文本检测模型、文本识别模型和端到端的文本识别模型,并阐述和分析每类模型方法的基本思路和优缺点;另外,列举了常见公共标准数据集以及性能评估指标和方法,并对不同模型相关实验结果进行了对比分析;最后总结基于深度学习的自然场景文本检测与识别技术面临的挑战和发展趋势. 展开更多
关键词 深度学习 自然场景 文本检测 文本识别 端到端
在线阅读 下载PDF
自然场景文本检测与端到端识别:深度学习方法 被引量:9
6
作者 周燕 韦勤彬 +4 位作者 廖俊玮 曾凡智 冯文婕 刘翔宇 周月霞 《计算机科学与探索》 CSCD 北大核心 2023年第3期577-594,共18页
自然场景图像中丰富的文本内容对场景理解有着重要意义,但自然场景文本往往具有极端横纵比、字体风格多变、背景及形状复杂等特点,而传统的文本检测与端到端识别方法存在着模型设计复杂、效率低、适用性不强且耗费成本高等缺点。随着深... 自然场景图像中丰富的文本内容对场景理解有着重要意义,但自然场景文本往往具有极端横纵比、字体风格多变、背景及形状复杂等特点,而传统的文本检测与端到端识别方法存在着模型设计复杂、效率低、适用性不强且耗费成本高等缺点。随着深度学习技术在图像领域的迅速发展,自然场景文本检测与端到端识别方法取得了突破性的进展,其性能和效率得到了显著提高。针对自然场景文本检测与端到端识别方法,梳理了近年来相关的研究工作。首先,根据文本框生成方式的不同,主要从回归候选框和像素分割两个角度来划分自然场景文本检测方法的基本思想,并对各类代表性的方法进行了详细叙述;其次,从端到端识别速度与解耦检测和识别任务的角度对端到端识别方法的技术发展路线进行了归纳总结;然后,介绍了常用的公开文本数据集,并在公开的文本数据集上对各类方法进行了性能对比;最后,对自然场景文本检测与端到端识别的主流研究方向进行了讨论,并阐述了其面临的挑战和未来的发展趋势。 展开更多
关键词 深度学习 自然场景 文本检测 端到端识别
在线阅读 下载PDF
基于深度学习的自然场景文本检测综述 被引量:7
7
作者 连哲 殷雁君 +1 位作者 云飞 智敏 《计算机工程》 CAS CSCD 北大核心 2024年第3期16-27,共12页
基于深度学习的自然场景文本检测技术已成为计算机视觉和自然语言处理领域的重要研究方向,不仅具有广泛的应用前景,而且也为研究人员提供了一个探索神经网络模型和算法的新平台。首先,介绍自然场景文本检测技术的相关概念、研究背景和... 基于深度学习的自然场景文本检测技术已成为计算机视觉和自然语言处理领域的重要研究方向,不仅具有广泛的应用前景,而且也为研究人员提供了一个探索神经网络模型和算法的新平台。首先,介绍自然场景文本检测技术的相关概念、研究背景和发展现状。接着,分析近年来基于深度学习的文本检测方法并将其分为基于检测框、基于分割、基于两者混合、其他4类,阐述4类经典和主流方法的基本思路和主要算法流程,归纳总结不同方法的使用机制、适用场景、优劣点及仿真实验结果和环境设置,明确不同方法之间的关联关系。然后,介绍自然场景文本检测的常用公共数据集和文本检测性能评估方法。最后,指出基于深度学习的自然场景文本检测技术目前所面临的主要挑战并对其未来发展方向进行展望。 展开更多
关键词 深度学习 计算机视觉 自然场景文本 文本检测 多方向文本检测 多尺度文本检测
在线阅读 下载PDF
自然场景文本快速检测识别方法
8
作者 燕天 《探测与控制学报》 CSCD 北大核心 2023年第3期126-133,共8页
针对基于卷积循环神经网络或实例分割的自然场景文本图像检测识别方法结构复杂、实时性差、鲁棒性低的问题,提出基于改进Faster RCNN和高斯混合模型(GMM)的文本图像快速检测识别方法。该方法首先使用改进的Faster RCNN模型进行单字符检... 针对基于卷积循环神经网络或实例分割的自然场景文本图像检测识别方法结构复杂、实时性差、鲁棒性低的问题,提出基于改进Faster RCNN和高斯混合模型(GMM)的文本图像快速检测识别方法。该方法首先使用改进的Faster RCNN模型进行单字符检测识别并求出图中文本区域的数量,然后使用高斯混合模型进行单字符聚类并构造出候选的多边形文本框,最后使用重定义的置信度公式筛选出适当的文本区域边框,并输出边框内的字符标签序列。公共数据集的测试结果表明,该方法具有良好的鲁棒性和实时性。 展开更多
关键词 自然场景文本检测识别 改进的Faster RCNN 高斯混合模型 鲁棒性 实时性
在线阅读 下载PDF
基于自适应色彩聚类和上下文信息的自然场景文本检测 被引量:3
9
作者 邹北骥 郭建京 +2 位作者 朱承璋 杨文君 徐子雯 《电子学报》 EI CAS CSCD 北大核心 2018年第6期1436-1444,共9页
自然场景文本检测是图像内容分析和理解的重要前提.本文提出一种基于自适应色彩聚类和上下文信息分析的方法,用于检测自然场景图像文本.首先,将层次聚类和参数自学习策略结合,设计一种自适应色彩聚类方法,提取图像中的候选字符.该自适... 自然场景文本检测是图像内容分析和理解的重要前提.本文提出一种基于自适应色彩聚类和上下文信息分析的方法,用于检测自然场景图像文本.首先,将层次聚类和参数自学习策略结合,设计一种自适应色彩聚类方法,提取图像中的候选字符.该自适应色彩聚类方法能针对不同图像自动学习权重阈值,有较好的字符召回率.然后,利用文本中字符成行出现的性质,设计一种基于上下文信息的字符验证策略,既能保证较高字符召回率,也能有效移除非文本字符.最后,合并字符构建文本行,并通过后处理得到文本检测结果.在ICDAR2013公共数据集上的实验结果表明:本文分别获得74.17%的召回率,83.40%的准确率和78.52%的F得分.与其他文本检测方法相比,本文获得了较好的文本检测性能,说明本文方法的优越性. 展开更多
关键词 自然场景文本检测 自适应色彩聚类 上下文信息 自学习策略
在线阅读 下载PDF
多层次MSER自然场景文本检测 被引量:11
10
作者 唐有宝 卜巍 邬向前 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1134-1140,共7页
提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,... 提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,采用多个阈值对其进行MSER区域检测,并将检测到的区域作为候选区域用于文本检测.检测过程中,对候选区域提取手工设计的底层特征和基于卷积神经网络(CNN)的深层特征,训练一个随机森林回归器对特征进行分类得到字符区域,再将其合并成单词区域,并进行相似的特征提取和分类,从而得到最终的文本检测结果.使用2个标准的数据库(ICDAR2011和ICDAR2013)对提出的方法进行性能评价,F指标在ICDAR2011和ICDAR2013上均为0.79,表明了所提出的自然场景文本检测方法的有效性. 展开更多
关键词 自然场景文本检测 多层次最大稳定极值区域(MSER) 卷积神经网络(CNN) 随机森林回归器
在线阅读 下载PDF
基于笔画宽度变换的自然场景文本检测方法 被引量:6
11
作者 宋文 肖建于 《计算机工程与应用》 CSCD 2013年第9期190-192,共3页
根据自然场景中文字笔画倾向于固定宽度的特点,提出一种基于像素笔画宽度变换的自然场景文本检测方法。该方法利用笔画宽度变换方法计算图像中每一个像素的笔画宽度,将笔画宽度大致相等的相邻像素合并形成文本候选区域,按照规则滤除一... 根据自然场景中文字笔画倾向于固定宽度的特点,提出一种基于像素笔画宽度变换的自然场景文本检测方法。该方法利用笔画宽度变换方法计算图像中每一个像素的笔画宽度,将笔画宽度大致相等的相邻像素合并形成文本候选区域,按照规则滤除一部分非文本区域从而实现文本的检测。实验结果表明,所提出的基于笔画宽度变换的文本检测方法避开了文本特征分类问题,能够提高文本检测的准确率和召回率,同时缩短文本检测的时间。 展开更多
关键词 笔画宽度 笔画宽度变换 自然场景 文本检测
在线阅读 下载PDF
深度卷积网络的自然场景文本检测研究综述 被引量:2
12
作者 宋传鸣 王一琦 +3 位作者 武惠娟 何熠辉 洪飏 王相海 《小型微型计算机系统》 CSCD 北大核心 2023年第9期1996-2008,共13页
自然场景文本检测是从场景图像中获取文本信息的重要手段,但是仍旧面临背景复杂、文字种类丰富、排列方向多样、文本行组成复杂等因素的严峻挑战.研究检测精度高、通用性强、稳健性好的自然场景文本检测方法是目前计算机视觉领域的热点... 自然场景文本检测是从场景图像中获取文本信息的重要手段,但是仍旧面临背景复杂、文字种类丰富、排列方向多样、文本行组成复杂等因素的严峻挑战.研究检测精度高、通用性强、稳健性好的自然场景文本检测方法是目前计算机视觉领域的热点问题之一.并且,基于深度卷积网络的自然场景文本检测方法逐渐成为主流.因此,从自然场景文本检测技术的研究背景及主要挑战切入,根据骨干网络的不同将现有方法划分为基于VGG网络的文本检测方法、基于残差网络的文本检测方法和基于特征金字塔网络的文本检测方法,重点阐述各类方法的核心思想、技术优势及其不足;然后,总结自然场景文本检测的公共数据集,对代表性方法的检测性能进行客观比较;最后,梳理和总结自然场景文本检测技术的难点并展望其未来发展趋势. 展开更多
关键词 文本检测 自然场景文本 综述 深度学习 深度卷积网络
在线阅读 下载PDF
自然场景文本检测关键技术及应用 被引量:4
13
作者 易尧华 杨锶齐 +1 位作者 王新宇 汤梓伟 《数字印刷》 北大核心 2020年第4期1-11,22,共12页
场景文本信息理解是计算机视觉任务(诸如智能导航等)的基础,基于卷积神经网络的自然场景图像文本检测是计算机视觉领域的研究热点。本文梳理自然场景文本检测方法体系,归纳总结场景文本检测方法、评价协议及测试数据集;阐述分析自然场... 场景文本信息理解是计算机视觉任务(诸如智能导航等)的基础,基于卷积神经网络的自然场景图像文本检测是计算机视觉领域的研究热点。本文梳理自然场景文本检测方法体系,归纳总结场景文本检测方法、评价协议及测试数据集;阐述分析自然场景文本检测的关键技术及应用领域;展望自然场景文本检测的发展趋势。 展开更多
关键词 自然场景 卷积神经网络 文本检测 关键技术
在线阅读 下载PDF
联合边界框校准的自然场景文本检测 被引量:1
14
作者 方承志 火兴龙 程宥铖 《计算机工程与应用》 CSCD 北大核心 2021年第1期161-167,共7页
针对自然场景下多方向文本对象,提出一种基于深度学习的文本检测方法。该方法在设计锚框时剥离锚框的方向特征但保留其长宽比特征,在覆盖相同长宽比范围时,锚框设计数量减少,从而缓解采样密集时正负样本类别失衡的影响。在方法的后处理... 针对自然场景下多方向文本对象,提出一种基于深度学习的文本检测方法。该方法在设计锚框时剥离锚框的方向特征但保留其长宽比特征,在覆盖相同长宽比范围时,锚框设计数量减少,从而缓解采样密集时正负样本类别失衡的影响。在方法的后处理阶段,提出一种边界框校准算法,该算法利用最大稳定极值区域(MSER)获取字符边缘信息,通过基于规则的逻辑判断,对边界框进行收缩或膨胀操作,从而达到边界框校准目的。通过在公开数据集ICDAR2015上的测试与比较,验证了所提边界框校准算法的有效性。 展开更多
关键词 文本检测 自然场景 类别失衡 边界框校准
在线阅读 下载PDF
TextRail:复杂自然场景下的不规则文本检测算法
15
作者 马静 薛浩 郭小宇 《计算机工程与应用》 CSCD 北大核心 2023年第21期112-122,共11页
文本检测是文本识别的前提和基础。复杂自然场景下,受透视、遮挡、变形等因素影响,图像质量难以保证,同时图像中的文字形式丰富多样,多呈不规则形状,加上复杂背景的干扰,致使文本检测难度大、精确度低。针对文本形状不规则的场景,提出... 文本检测是文本识别的前提和基础。复杂自然场景下,受透视、遮挡、变形等因素影响,图像质量难以保证,同时图像中的文字形式丰富多样,多呈不规则形状,加上复杂背景的干扰,致使文本检测难度大、精确度低。针对文本形状不规则的场景,提出了一种文本边轨模型(TextRail),该模型基于文本上、下边界基准点表示文本区域的思想,实现对任意形状文本的高效检测。TextRail使用全卷积网络(full convolutional network,FCN)及特征金字塔网络(feature pyramid network,FPN)提取文本图像特征;将特征送入检测头网络,实现文本区域上下边界基准点的预测,将预测结果通过位置感知非极大抑制(locality-aware non-maximum suppression,LNMS)合并,得到最终的上下边界基准点;采用薄板样条插值(thin plate spline,TPS)的方法实现对不规则文本的自动矫正。通过大量的实验验证,TextRail在F1分值上优于其他文本检测模型。同时TextRail模型可以准确表示出文字的朝向、弯曲和变形情况,有效提升了不规则文本检测的准确率和鲁棒性。 展开更多
关键词 复杂自然场景 不规则文本检测 文本矫正 基准点 TextRail模型
在线阅读 下载PDF
基于笔画角度变换和宽度特征的自然场景文本检测 被引量:4
16
作者 陈硕 郑建彬 +1 位作者 詹恩奇 汪阳 《计算机应用研究》 CSCD 北大核心 2019年第4期1270-1274,共5页
针对光照不均和背景复杂度所导致的自然场景文本检测中文本的漏检和错检现象,提出一种基于笔画角度变换和宽度特征的自然场景文本检测方法。分析发现与非文本相比,文本具有较稳定的笔画角度变换次数和笔画宽度,针对这两个特性提出笔画... 针对光照不均和背景复杂度所导致的自然场景文本检测中文本的漏检和错检现象,提出一种基于笔画角度变换和宽度特征的自然场景文本检测方法。分析发现与非文本相比,文本具有较稳定的笔画角度变换次数和笔画宽度,针对这两个特性提出笔画外边界优劣角变换次数和增强笔画支持像素面积比两种特征。前者分段统计笔画外轮廓角度变换次数;后者计算笔画宽度稳定区域在笔画总面积的占比,用来分别反映笔画角度和宽度变化稳定特性。为降低文本漏检率,采用多通道最大稳定极值区域(maximally stable extremal regions,MSER)检测,合并所有候选区域,提取候选区域的笔画特征和纹理特征,利用支持向量机完成文本和非文本区域分类。在ICDAR2015数据库上,算法的精确率和召回率分别达到79. 3%和72. 8%,并在一定程度上解决了光照不均和复杂背景的问题。 展开更多
关键词 自然场景 文本检测 笔画特征
在线阅读 下载PDF
基于边缘检测和特征融合的自然场景文本定位 被引量:5
17
作者 王梦迪 张友梅 常发亮 《计算机科学》 CSCD 北大核心 2017年第9期300-303,314,共5页
文本定位作为文本识别的基础和前提,对图像深层信息的理解至关重要。针对自然场景下的文本定位受光照、复杂背景等因素影响较大的问题,提出了一种基于多方向边缘检测和自适应特征融合的自然场景文本定位方法。该方法首先将自然场景图像... 文本定位作为文本识别的基础和前提,对图像深层信息的理解至关重要。针对自然场景下的文本定位受光照、复杂背景等因素影响较大的问题,提出了一种基于多方向边缘检测和自适应特征融合的自然场景文本定位方法。该方法首先将自然场景图像进行三通道八方向的边缘检测;然后通过启发式规则对得到的边缘图像进行过滤从而提取出备选文本域,进而对备选文本域进行自适应权值的HOG-LBP特征提取与融合;最后采用支持向量机进行特征分类学习,实现文本定位。实验结果表明,该方法能准确定位自然场景图片的文本区域,对光照和复杂背景具有较强的鲁棒性。 展开更多
关键词 自然场景 文本定位 边缘检测 特征融合
在线阅读 下载PDF
基于聚类与边缘检测的自然场景文本提取方法 被引量:4
18
作者 常莹 何东健 李宗儒 《计算机工程与设计》 CSCD 北大核心 2010年第18期4040-4043,共4页
为了解决复杂自然场景、光照不均匀及背景纹理丰富图像中文本的有效提取,提出一种基于K-means聚类与边缘检测结合的自然场景文本提取方法。该方法通过改进K-means聚类算法,实现文本区域的分割;然后对分割后的图像进行二值子图分解,将分... 为了解决复杂自然场景、光照不均匀及背景纹理丰富图像中文本的有效提取,提出一种基于K-means聚类与边缘检测结合的自然场景文本提取方法。该方法通过改进K-means聚类算法,实现文本区域的分割;然后对分割后的图像进行二值子图分解,将分解后的各子图像的连通区域进行标记与分析,得到候选的字符区域;最后利用文本区域的边缘特征对候选字符区域过滤,实现文本字符的提取。实验结果表明,该方法能有效提取出复杂背景、光照影响及背景纹理丰富图像中的文本字符区域。 展开更多
关键词 自然场景 文本提取 聚类 连通区域标记与分析 边缘检测
在线阅读 下载PDF
基于对象建议算法的自然场景文本检测 被引量:6
19
作者 哈恩楠 吉立新 高超 《计算机应用研究》 CSCD 北大核心 2018年第2期624-627,636,共5页
对象建议算法(object proposals)是对象检测中的常用算法,用于快速定位物体区域。根据自然场景文本的特点,将对象建议算法应用到文本检测中,并与经典的最稳定极值区域算法相结合;然后,通过贝叶斯模型融合了笔画宽度特征、视觉散度特征... 对象建议算法(object proposals)是对象检测中的常用算法,用于快速定位物体区域。根据自然场景文本的特点,将对象建议算法应用到文本检测中,并与经典的最稳定极值区域算法相结合;然后,通过贝叶斯模型融合了笔画宽度特征、视觉散度特征和边缘梯度特征,并将文本和非文本区域的区分问题转换成一个二值标记问题,通过最小化能量函数寻找最佳标记;最后,通过均值漂移聚类寻找文本区域的中心生成文本行。经实验证明,本算法在常用的自然场景文本检测数据集上速度得到了提高,并且一定程度上解决了传统最稳定极值区域算法对光照敏感的问题,获得了较高的查全率。 展开更多
关键词 对象建议算法 最稳定极值区域 贝叶斯分类器 自然场景文本检测
在线阅读 下载PDF
自然场景中基于单样例的文本检测算法 被引量:1
20
作者 杜一帆 王建 +1 位作者 刘立 何宇清 《小型微型计算机系统》 CSCD 北大核心 2017年第8期1867-1871,共5页
在自然场景图像中由于图像背景的复杂性,给文本检测带来了不小的挑战.为了减少复杂背景对文本检测的影响,提出一种基于单样例的文本检测算法.单样例是一幅仅包含文本区域的图像.通过计算目标图像与单样例图像之间的特征相似度,对自然场... 在自然场景图像中由于图像背景的复杂性,给文本检测带来了不小的挑战.为了减少复杂背景对文本检测的影响,提出一种基于单样例的文本检测算法.单样例是一幅仅包含文本区域的图像.通过计算目标图像与单样例图像之间的特征相似度,对自然场景图像中文本区域进行初步定位,大大减少了MSER算法所提文本候选区域中的非文本区域.对于得到的文本候选区域,使用几何约束以及笔画宽度特征,进一步移除非文本区域.最后合并特征相似的文字区块,提取出图像中的文本区域.实验结果表明,与其他算法相比,该算法能够准确检测出图像中的文本区域,达到理想的定位效果. 展开更多
关键词 自然场景 文本检测 单样例 局部自适应回归核 MSER
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部