期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于Deformable DETR的自然场景任意形状文本检测 被引量:1
1
作者 张子旭 游钰玮 +1 位作者 仝明磊 薛亮 《无线电工程》 2024年第2期312-318,共7页
自然场景下的文本区域形状复杂多变,直接使用轮廓坐标描述文本区域会使得建模不充分,导致文本检测准确性低。针对自然场景下文本区域不规则的问题,提出了一种基于Deformable DETR的任意形状文本检测模型,不同于传统的直接预测轮廓点的方... 自然场景下的文本区域形状复杂多变,直接使用轮廓坐标描述文本区域会使得建模不充分,导致文本检测准确性低。针对自然场景下文本区域不规则的问题,提出了一种基于Deformable DETR的任意形状文本检测模型,不同于传统的直接预测轮廓点的方法,使用B-样条对文字区域进行建模使得文本轮廓平滑精确的同时减少了需要预测的参数。提出的文本检测模型无需手工设计锚点、区域建议等组件,极大地简化了模型设计并提高了通用性。提出的模型在无需额外数据集的情况下在任意形状文本数据集CTW1500和Total-Text上的平均精度(F值)分别达到了85.4%和85.0%,证明了模型的有效性。 展开更多
关键词 计算机视觉 自然场景文本检测 Deformable DETR B-样条
在线阅读 下载PDF
自然场景文本快速检测识别方法
2
作者 燕天 《探测与控制学报》 CSCD 北大核心 2023年第3期126-133,共8页
针对基于卷积循环神经网络或实例分割的自然场景文本图像检测识别方法结构复杂、实时性差、鲁棒性低的问题,提出基于改进Faster RCNN和高斯混合模型(GMM)的文本图像快速检测识别方法。该方法首先使用改进的Faster RCNN模型进行单字符检... 针对基于卷积循环神经网络或实例分割的自然场景文本图像检测识别方法结构复杂、实时性差、鲁棒性低的问题,提出基于改进Faster RCNN和高斯混合模型(GMM)的文本图像快速检测识别方法。该方法首先使用改进的Faster RCNN模型进行单字符检测识别并求出图中文本区域的数量,然后使用高斯混合模型进行单字符聚类并构造出候选的多边形文本框,最后使用重定义的置信度公式筛选出适当的文本区域边框,并输出边框内的字符标签序列。公共数据集的测试结果表明,该方法具有良好的鲁棒性和实时性。 展开更多
关键词 自然场景文本检测识别 改进的Faster RCNN 高斯混合模型 鲁棒性 实时性
在线阅读 下载PDF
多层次MSER自然场景文本检测 被引量:11
3
作者 唐有宝 卜巍 邬向前 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1134-1140,共7页
提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,... 提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,采用多个阈值对其进行MSER区域检测,并将检测到的区域作为候选区域用于文本检测.检测过程中,对候选区域提取手工设计的底层特征和基于卷积神经网络(CNN)的深层特征,训练一个随机森林回归器对特征进行分类得到字符区域,再将其合并成单词区域,并进行相似的特征提取和分类,从而得到最终的文本检测结果.使用2个标准的数据库(ICDAR2011和ICDAR2013)对提出的方法进行性能评价,F指标在ICDAR2011和ICDAR2013上均为0.79,表明了所提出的自然场景文本检测方法的有效性. 展开更多
关键词 自然场景文本检测 多层次最大稳定极值区域(MSER) 卷积神经网络(CNN) 随机森林回归器
在线阅读 下载PDF
基于自适应色彩聚类和上下文信息的自然场景文本检测 被引量:2
4
作者 邹北骥 郭建京 +2 位作者 朱承璋 杨文君 徐子雯 《电子学报》 EI CAS CSCD 北大核心 2018年第6期1436-1444,共9页
自然场景文本检测是图像内容分析和理解的重要前提.本文提出一种基于自适应色彩聚类和上下文信息分析的方法,用于检测自然场景图像文本.首先,将层次聚类和参数自学习策略结合,设计一种自适应色彩聚类方法,提取图像中的候选字符.该自适... 自然场景文本检测是图像内容分析和理解的重要前提.本文提出一种基于自适应色彩聚类和上下文信息分析的方法,用于检测自然场景图像文本.首先,将层次聚类和参数自学习策略结合,设计一种自适应色彩聚类方法,提取图像中的候选字符.该自适应色彩聚类方法能针对不同图像自动学习权重阈值,有较好的字符召回率.然后,利用文本中字符成行出现的性质,设计一种基于上下文信息的字符验证策略,既能保证较高字符召回率,也能有效移除非文本字符.最后,合并字符构建文本行,并通过后处理得到文本检测结果.在ICDAR2013公共数据集上的实验结果表明:本文分别获得74.17%的召回率,83.40%的准确率和78.52%的F得分.与其他文本检测方法相比,本文获得了较好的文本检测性能,说明本文方法的优越性. 展开更多
关键词 自然场景文本检测 自适应色彩聚类 上下文信息 自学习策略
在线阅读 下载PDF
自然场景图像中的文本检测及定位算法研究——基于边缘信息与笔画特征 被引量:4
5
作者 李东勤 徐勇 周万怀 《重庆科技学院学报(自然科学版)》 CAS 2019年第3期81-83,共3页
鉴于自然场景图像中的文本具有较强的边缘信息,而汉字大多包含横竖笔画,提出了基于边缘信息与笔画特征的文本检测及定位方法。通过提取自然场景图像的边缘特征,运用数学形态学方法实现对断裂笔画的有效连接,从而形成候选文本区域;再利... 鉴于自然场景图像中的文本具有较强的边缘信息,而汉字大多包含横竖笔画,提出了基于边缘信息与笔画特征的文本检测及定位方法。通过提取自然场景图像的边缘特征,运用数学形态学方法实现对断裂笔画的有效连接,从而形成候选文本区域;再利用文本的笔画特征,实现文本与背景的分离;最后通过自定义规则,将相邻的候选文本块进行合并,同时去除不符合条件的候选文本块。测试结果显示,该方法的查全率为90.4%,误检率为15.6%。 展开更多
关键词 自然场景图像 文本检测 边缘特征 笔画特征 形态学方法
在线阅读 下载PDF
自然场景文本检测关键技术及应用 被引量:4
6
作者 易尧华 杨锶齐 +1 位作者 王新宇 汤梓伟 《数字印刷》 北大核心 2020年第4期1-11,22,共12页
场景文本信息理解是计算机视觉任务(诸如智能导航等)的基础,基于卷积神经网络的自然场景图像文本检测是计算机视觉领域的研究热点。本文梳理自然场景文本检测方法体系,归纳总结场景文本检测方法、评价协议及测试数据集;阐述分析自然场... 场景文本信息理解是计算机视觉任务(诸如智能导航等)的基础,基于卷积神经网络的自然场景图像文本检测是计算机视觉领域的研究热点。本文梳理自然场景文本检测方法体系,归纳总结场景文本检测方法、评价协议及测试数据集;阐述分析自然场景文本检测的关键技术及应用领域;展望自然场景文本检测的发展趋势。 展开更多
关键词 自然场景 卷积神经网络 文本检测 关键技术
在线阅读 下载PDF
自然场景图像中的文本检测方法研究
7
作者 李东勤 王芳 周万怀 《重庆科技学院学报(自然科学版)》 CAS 2016年第6期108-111,共4页
研究自然场景中的文本检测与定位方法,总结文本检测的研究现状,并对主流算法进行了分类和对比。
关键词 自然场景图像 文本检测 文本定位 文本/非文本分类
在线阅读 下载PDF
基于注意力机制特征融合与增强的自然场景文本检测 被引量:6
8
作者 陈静娴 周全 《无线电工程》 北大核心 2022年第1期62-69,共8页
为了解决自然场景文本检测中由于文本实例分布随机、形态与尺度多样造成的检测难题,设计了一种基于注意力机制特征融合与增强的自然场景文本检测算法。利用注意力机制对有效特征提取的优势,在模型的解码融合阶段设计并引入了一种基于注... 为了解决自然场景文本检测中由于文本实例分布随机、形态与尺度多样造成的检测难题,设计了一种基于注意力机制特征融合与增强的自然场景文本检测算法。利用注意力机制对有效特征提取的优势,在模型的解码融合阶段设计并引入了一种基于注意力的特征融合模块(Attention-based Feature Fusion Module, AFFM),利用空间和通道注意力分别为高层特征和低层特征引入更丰富的细节和全局信息,进一步提高了检测的准确率;设计了联合注意力特征增强模块(Joint Attention Feature Enhancement Module, JAM),利用卷积对级联后的特征在不同通道之间、空间位置间的联系建模,并生成联合特征权重mask对级联特征做加权,从而提高信息的表征能力,有效减少误检与漏检。在Total-Text和ICDAR2015两个数据集上对模型做评估,测试结果表明,该方法的F1综合指标分别达到了85.1%和87.6%,均优于当前主流算法。 展开更多
关键词 自然场景文本检测 注意力机制 特征融合 特征增强 深度学习
在线阅读 下载PDF
基于DenseNet的自然场景文本检测 被引量:3
9
作者 宋彭彭 曾祥进 +1 位作者 郑安义 米勇 《武汉工程大学学报》 CAS 2022年第3期309-314,共6页
针对自然场景中由文本背景复杂、文字大小不同而引起的文本检测准确率不高的问题,提出了一种基于DenseNet改进的文本检测方法。首先使用DenseNet网络提取更深层次的文本特征,通过引入协调注意力,将位置信息嵌入通道注意力中获取大区域特... 针对自然场景中由文本背景复杂、文字大小不同而引起的文本检测准确率不高的问题,提出了一种基于DenseNet改进的文本检测方法。首先使用DenseNet网络提取更深层次的文本特征,通过引入协调注意力,将位置信息嵌入通道注意力中获取大区域特征;其次对DenseNet网络使用特征融合技术,使改进后的网络能够提取文本信息更丰富的特征,降低了漏检和误检文本的概率。结果表明:该模型在数据集ICDAR2011和ICDAR2013中的准确率分别达到了0.88和0.89,证实了该改进方法的有效性。 展开更多
关键词 自然场景 文本检测 DenseNet 协调注意力 特征融合
在线阅读 下载PDF
短边顶点回归网络:新型自然场景文本检测器 被引量:1
10
作者 游洋彪 石繁槐 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第12期89-97,共9页
近年来许多基于通用目标检测框架的文本检测方法相继被提出,这些方法往往是直接预测文本的整个边界框,受网络感受野的限制而难以有效检测长文本。为改进长文本难以有效检测的问题,提出了基于短边顶点回归网络的文本检测方法。该方法将... 近年来许多基于通用目标检测框架的文本检测方法相继被提出,这些方法往往是直接预测文本的整个边界框,受网络感受野的限制而难以有效检测长文本。为改进长文本难以有效检测的问题,提出了基于短边顶点回归网络的文本检测方法。该方法将文本区域划分为3类区域,即两条短边附近的区域及中间区域,采用分离再组合的方式检测文本,不再直接预测文本的整个边界框。首先,在一个融合多层特征的残差网络上预测分割3类文本区域,同时还将在每个短边区域的像素点处预测与之邻近的一条短边的两个顶点。然后,在后处理过程中,利用文本中间区域与短边区域相邻的关系将文本两类短边区域进行组合,两类短边区域预测的短边顶点将随之结合,便能产生完整精确的文本检测结果。在一个长文本检测数据集和公开的MSRA-TD 500,ICDAR 2015及ICDAR 2013自然场景文本检测数据集上进行测试比较,该方法的精度与速度超过目前绝大部分方法。实验结果表明,该方法在文本检测,尤其是长文本检测,具有一定的优越性。 展开更多
关键词 自然场景 文本检测 卷积神经网络 感受野 文本
在线阅读 下载PDF
基于改进SSD算法的自然场景文本检测
11
作者 孙悦 艾斯卡尔·艾木都拉 阿不都萨拉木·达吾提 《电视技术》 2019年第8期1-9,27,共10页
由于场景文本图像中背景的复杂性和文本方向的不确定性,精确定位文本位置难度加大。基于此,根据R2CNN算法对多方向文本的处理思想,提出将该思想与SSD算法相结合,即利用文本区域左上角、右上角坐标以及文本区域的高与SSD算法每一层特征... 由于场景文本图像中背景的复杂性和文本方向的不确定性,精确定位文本位置难度加大。基于此,根据R2CNN算法对多方向文本的处理思想,提出将该思想与SSD算法相结合,即利用文本区域左上角、右上角坐标以及文本区域的高与SSD算法每一层特征层中不同纵横比的锚点框进行匹配,利用非极大值抑制筛选出最优文本框,获得文本区域。为适应场景文本,提出增添相应的锚点框纵横比,从而进行自然场景文本检测。实验结果表明,所提方法不仅可以检测出倾斜的场景文本,而且提高了SSD算法在场景文本检测时的准确性和召回率,最终准确率为0.7056,召回率为0.5342,F值为0.6080。 展开更多
关键词 自然场景 文本检测 深度学习 SSD算法 R2CNN算法
在线阅读 下载PDF
基于R2CNN的自然场景图像中文本检测方法 被引量:1
12
作者 沈伟生 《无线互联科技》 2019年第2期107-109,共3页
在互联网世界中,图片是传递信息的重要媒介。特别是电子商务、社交、搜索等领域,每天都有数以亿兆级别的图像在传播。自然场景就是我们所处的生活环境,自然场景图像中存在着大量的文本信息,例如路标信息、商店门店信息、商品包装信息等... 在互联网世界中,图片是传递信息的重要媒介。特别是电子商务、社交、搜索等领域,每天都有数以亿兆级别的图像在传播。自然场景就是我们所处的生活环境,自然场景图像中存在着大量的文本信息,例如路标信息、商店门店信息、商品包装信息等。随着深度学习的发展,基于深度学习的文本检测技术也逐渐流行起来。文章主要提出的是基于R2CNN的文本检测算法。在R2CNN算法的基础上对算法的结构进行改进,最终算法在ICDAR2015数据集上的召回率为87.2%,精确率为81.43%。 展开更多
关键词 自然场景图像 文本检测 R2CNN算法
在线阅读 下载PDF
基于分割的自然场景下文本检测方法与应用
13
作者 陈小顺 王良君 《电子技术应用》 2021年第2期54-57,共4页
自然场景文本检测识别在智能设备中应用广泛,而对文本识别的第一步则是对文本进行精确的定位检测。对于现有像素分割方法PixelLink中存在的弯曲文本定位包含过多背景信息、检测图像后处理不足两个主要问题提出改进。引入特征通道注意力... 自然场景文本检测识别在智能设备中应用广泛,而对文本识别的第一步则是对文本进行精确的定位检测。对于现有像素分割方法PixelLink中存在的弯曲文本定位包含过多背景信息、检测图像后处理不足两个主要问题提出改进。引入特征通道注意力机制,关注生成特征图中特征通道间的权重关系,提升检测方法的鲁棒性。接着改变公开数据集标注形式,将坐标点表示为一串带有方向的序列形式,在LSTM模型中进行多边形框的学习与框定。最后在公开数据集和自建数据集上进行文本检测测试。实验表明,改进的检测方法在各数据集中表现优于原方法,与当前领先方法精度相近,能够在各个环境中完成对文本的检测功能。 展开更多
关键词 像素分割 注意力机制 LSTM 自然场景文本检测
在线阅读 下载PDF
自然场景图像中的文字检测综述 被引量:12
14
作者 杨飞 《电子设计工程》 2016年第24期165-168,共4页
近年来自然场景图像中的文字检测与识别越来越得到人们的关注,主要是因为图像中的文字检测与识别对于理解图片内容、建立图像索引具有重要的意义。本文针对图像文字检测与识别这一领域的核心的问题即文字检测与定位,首先通过介绍了图像... 近年来自然场景图像中的文字检测与识别越来越得到人们的关注,主要是因为图像中的文字检测与识别对于理解图片内容、建立图像索引具有重要的意义。本文针对图像文字检测与识别这一领域的核心的问题即文字检测与定位,首先通过介绍了图像中的文字检测的基本概念,然后通过介绍和对比各种图像文字检测的方法的优缺点,我们可以得出这样一个结论即结合深度学习方法和大数据来进行自然场景图像文字检测与识别已经成为一个趋势和热点,文章最后总结了该领域的挑战和最新的发展趋势。 展开更多
关键词 自然场景文字检测 文字识别 深度学习方法
在线阅读 下载PDF
自然场景图像中的文本信息提取研究
15
作者 李东勤 徐勇 《黑龙江科技信息》 2015年第36期131-133,共3页
自然场景中的文字提取技术成为了近几年计算机视觉领域的热门研究课题。本文对自然场景文本信息提取的关键技术进行了研究,全面总结了文本信息提取的研究现状,对文本检测定位和识别算法设计进行了有益的探索和研究,并对主流算法进行了... 自然场景中的文字提取技术成为了近几年计算机视觉领域的热门研究课题。本文对自然场景文本信息提取的关键技术进行了研究,全面总结了文本信息提取的研究现状,对文本检测定位和识别算法设计进行了有益的探索和研究,并对主流算法进行了分类和对比,最后总结了场景图像中文本信息提取存在的主要问题和评测方法。 展开更多
关键词 自然场景图像 文本信息提取 文本定位 文本识别
在线阅读 下载PDF
基于深度学习的场景图像自适应文本检测方法
16
作者 杨仁桓 康家杰 +3 位作者 秦传波 麦超云 邱天 喻慧文 《现代电子技术》 2023年第16期143-148,共6页
为了解决自然场景图像中任意形状文本检测的难题,文中提出一种具有自适应文本区域表示的鲁棒场景文本检测方法;同时基于回归和分割方法的两种思想,设计自适应角点检测模块(ACDM)和自适应阈值分割模块(ATSM)。将不同尺度的文本生成不同... 为了解决自然场景图像中任意形状文本检测的难题,文中提出一种具有自适应文本区域表示的鲁棒场景文本检测方法;同时基于回归和分割方法的两种思想,设计自适应角点检测模块(ACDM)和自适应阈值分割模块(ATSM)。将不同尺度的文本生成不同数量的角点进行定位,利用自适应阈值的方法生成文本分割图,结合生成的角点候选框进行联合优化。实验结果表明:所提方法在ICDAR2015数据集上综合指标F为86.5%,相较于PSENet网络提升0.8%;在Total-Text和CTW1500数据集上综合指标F分别为85.3%和84.2%,相较于DBNet网络分别提升0.6%和0.8%。该方法能有效提高任意形状文本检测的鲁棒性。 展开更多
关键词 自适应文本检测 自然场景图像 深度学习 自适应角点检测 自适应阈值分割 ResNet-50网络 特征金字塔网络(FPN)
在线阅读 下载PDF
利用多级卷积神经网络融合的自然场景图像手写体文字识别
17
《无线电通信技术》 2020年第4期470-470,共1页
当前自然场景文本识别算法的准确性受到传统图像文字识别方法性能不足的限制。复杂的背景、书写的变化、文本大小、方向、低分辨率和多语言文本使得识别自然图像中的文本成为复杂且具有挑战性的任务。传统的机器学习和基于深度学习的方... 当前自然场景文本识别算法的准确性受到传统图像文字识别方法性能不足的限制。复杂的背景、书写的变化、文本大小、方向、低分辨率和多语言文本使得识别自然图像中的文本成为复杂且具有挑战性的任务。传统的机器学习和基于深度学习的方法已经取得了令人满意的进展,但是针对自然图像中的诸如阿拉伯语和乌尔都语手写体文本的字符识别仍然是一个开放的研究主题。 展开更多
关键词 卷积神经网络 机器学习 字符识别 自然图像 低分辨率 乌尔都语 手写体 场景文本
在线阅读 下载PDF
基于深度学习的指针式仪表检测与识别研究 被引量:35
18
作者 徐发兵 吴怀宇 +1 位作者 陈志环 喻汉 《高技术通讯》 EI CAS 北大核心 2019年第12期1206-1215,共10页
为了解决变电站指针式仪表读数识别中指针区域提取困难、指针中心线定位误差大以及识别精度较差等问题,针对变电站中常见的刻度分布均匀的指针式仪表,提出了一种基于深度学习的指针式仪表自动检测与识别方法。首先,利用卷积神经网络模... 为了解决变电站指针式仪表读数识别中指针区域提取困难、指针中心线定位误差大以及识别精度较差等问题,针对变电站中常见的刻度分布均匀的指针式仪表,提出了一种基于深度学习的指针式仪表自动检测与识别方法。首先,利用卷积神经网络模型检测当前视野下仪表目标的包围框位置,得到仪表目标图像;然后,利用改进有效和准确的场景文本检测器(EAST)算法对检测到的仪表目标图像进行文本检测,检测出仪表图像中的文本图像,利用设计的印刷体数字识别模型对文本图像进行识别,筛选出仪表刻度数字,得到仪表刻度数字的位置信息与数值;最后,通过仪表刻度数字的位置信息提取出仪表指针直线与仪表中心,通过识别出的数值结合角度法完成仪表读数识别。通过大量实验对所提出的指针式仪表读数检测与识别方法进行验证,实验结果表明,本文所提出的仪表识别方法的平均准确率高于98.5%,对于复杂背景下指针式仪表的自动检测与识别任务具有良好的准确性与稳定性,可满足变电站实际应用需求。 展开更多
关键词 深度学习 指针式仪表识别 卷积神经网络 改进场景文本检测器(EAST)算法
在线阅读 下载PDF
一种车辆识别代号检测和识别的弱监督学习方法 被引量:2
19
作者 曹志 尚丽丹 尹东 《光电工程》 CAS CSCD 北大核心 2021年第2期78-90,共13页
车辆识别代号对于车辆年检具有重要的意义。由于缺乏字符级标注,无法对车辆识别代号进行单字符风格校验。针对该问题,设计了一种单字符检测和识别框架,并对此框架提出了一种无须字符级标注的弱监督学习方法。首先,对VGG16-BN各个层次的... 车辆识别代号对于车辆年检具有重要的意义。由于缺乏字符级标注,无法对车辆识别代号进行单字符风格校验。针对该问题,设计了一种单字符检测和识别框架,并对此框架提出了一种无须字符级标注的弱监督学习方法。首先,对VGG16-BN各个层次的特征信息进行融合,获得具有单字符位置信息与语义信息的融合特征图;其次,设计了一个字符检测分支和字符识别分支的网络结构,用于提取融合特征图中的单字符位置和语义信息;最后,利用文本长度和单字符类别信息,对所提框架在无字符级标注的车辆识别代号数据集上进行弱监督训练。实验结果表明,本文方法在车辆识别代号测试集上得到的检测Hmean数值达到0.964,单字符检测和识别准确率达到95.7%,具有很强的实用性。 展开更多
关键词 卷积神经网络 弱监督学习 自然场景文本检测 自然场景文本识别 车辆识别代号
在线阅读 下载PDF
基于改进YOLOv3的快速文本检测 被引量:4
20
作者 王霏 黄俊 文洪伟 《电讯技术》 北大核心 2022年第1期130-137,共8页
针对深度学习文本检测算法存在运行速度慢、模型体积大等问题,提出了基于改进的YOLOv3(You Only Look Once v3)文本检测方法(mobile-text-YOLOv3)。通过深度可分离卷积思想轻量化Darknet-53网络,在高层特征借助双线性插值和偏移层使卷... 针对深度学习文本检测算法存在运行速度慢、模型体积大等问题,提出了基于改进的YOLOv3(You Only Look Once v3)文本检测方法(mobile-text-YOLOv3)。通过深度可分离卷积思想轻量化Darknet-53网络,在高层特征借助双线性插值和偏移层使卷积核具有可变感受野,较大地改善了模型的性能;改进D-IOU,引入宽度惩罚,改善了锚框(anchor)在垂直方向稀疏和回归目标形状时不平衡的问题,提高了检测精度。实验结果表明,该改进算法精度比YOLOv3提高7个百分点,检测速度最高可达22 frame/s,与同类算法相比有更快的检测速度和更小的模型体积。 展开更多
关键词 自然场景 文本检测 深度可分离卷积 可变形卷积
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部