期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
弱标签声音事件检测的空间-通道特征表征与自注意池化
被引量:
2
1
作者
杨利平
侯振威
+1 位作者
辜小花
郝峻永
《电子学报》
EI
CAS
CSCD
北大核心
2023年第2期297-306,共10页
深度神经网络声音事件检测方法需要大量标记声音事件类别和起止时间的强标签音频样本,然而强标签标注非常困难和耗时.弱标签声音事件检测是解决这一困难的有效途径.本文将弱标签声音事件检测作为多实例学习问题,并基于卷积循环神经网络...
深度神经网络声音事件检测方法需要大量标记声音事件类别和起止时间的强标签音频样本,然而强标签标注非常困难和耗时.弱标签声音事件检测是解决这一困难的有效途径.本文将弱标签声音事件检测作为多实例学习问题,并基于卷积循环神经网络提出弱标签声音事件检测的空间-通道特征表征与自注意池化方法.该方法研究多实例弱标签声音事件检测的特征表征和帧级预测结果池化两个方面的内容.在特征表征方面,为了增强卷积神经网络的特征表征能力,结合上下文门控和通道注意机制构建门控注意力结构并嵌入到卷积循环神经网络中,实现了音频样本特征的空间和通道特征选择;在预测结果池化方面,引入自注意思想设计音频帧预测结果的自注意池化方法,增强了音频样本中事件帧之间的相关度,使事件帧获得更大的权重.本文方法通过对卷积循环神经网络特征表征和预测结果池化的革新,有效提升了模型的检测性能.本文提出的方法在DCASE 2017任务4和DCASE 2018任务4数据集的评估集中分别取得了52.47%和31.00%的F1得分,性能优于当前绝大部分的弱标签声音事件检测方法.实验结果表明:本文提出的空间-通道特征表征与自注意池化方法能显著改善弱标签声音事件检测的综合性能.
展开更多
关键词
特征表征
自注意池化
卷积循环神经网络
弱标签学习
声音事件检测
在线阅读
下载PDF
职称材料
用于非精确图匹配的改进注意图卷积网络
被引量:
6
2
作者
李昌华
刘艺
李智杰
《小型微型计算机系统》
CSCD
北大核心
2021年第1期41-45,共5页
将传统图卷积网络模型应用于非精确图匹配时,在卷积步骤早期易存在节点特性以及节点之间拓扑特征的损失,从而影响导致匹配性能.针对这一问题,提出了改进注意图卷积网络模型.使用相对较少的参数以端到端的方式学习分层表示,利用自注意机...
将传统图卷积网络模型应用于非精确图匹配时,在卷积步骤早期易存在节点特性以及节点之间拓扑特征的损失,从而影响导致匹配性能.针对这一问题,提出了改进注意图卷积网络模型.使用相对较少的参数以端到端的方式学习分层表示,利用自注意机制来区分应该丢弃或保留的节点.首先利用注意图卷积网络来自动学习不同跳上邻域的重要程度;其次,加入自注意池化层,从矩阵图嵌入的各个方面概括图表示;最后,在多个标准图数据集中进行训练和测试.实验结果表明,相较于目前最先进的图核和其他深度学习算法,该方法在标准图数据集上实现了更优的图分类性能.
展开更多
关键词
节点邻域
图形拓扑
图匹配
自注意
图卷积网络
自注意
图
池化
在线阅读
下载PDF
职称材料
题名
弱标签声音事件检测的空间-通道特征表征与自注意池化
被引量:
2
1
作者
杨利平
侯振威
辜小花
郝峻永
机构
重庆大学光电技术及系统教育部重点实验室
重庆科技学院电气工程学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2023年第2期297-306,共10页
基金
国家自然科学基金(No.61903054)。
文摘
深度神经网络声音事件检测方法需要大量标记声音事件类别和起止时间的强标签音频样本,然而强标签标注非常困难和耗时.弱标签声音事件检测是解决这一困难的有效途径.本文将弱标签声音事件检测作为多实例学习问题,并基于卷积循环神经网络提出弱标签声音事件检测的空间-通道特征表征与自注意池化方法.该方法研究多实例弱标签声音事件检测的特征表征和帧级预测结果池化两个方面的内容.在特征表征方面,为了增强卷积神经网络的特征表征能力,结合上下文门控和通道注意机制构建门控注意力结构并嵌入到卷积循环神经网络中,实现了音频样本特征的空间和通道特征选择;在预测结果池化方面,引入自注意思想设计音频帧预测结果的自注意池化方法,增强了音频样本中事件帧之间的相关度,使事件帧获得更大的权重.本文方法通过对卷积循环神经网络特征表征和预测结果池化的革新,有效提升了模型的检测性能.本文提出的方法在DCASE 2017任务4和DCASE 2018任务4数据集的评估集中分别取得了52.47%和31.00%的F1得分,性能优于当前绝大部分的弱标签声音事件检测方法.实验结果表明:本文提出的空间-通道特征表征与自注意池化方法能显著改善弱标签声音事件检测的综合性能.
关键词
特征表征
自注意池化
卷积循环神经网络
弱标签学习
声音事件检测
Keywords
feature representation
self-attention pooling
convolutional recurrent neural network
weakly-labeled learning
sound event detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
TP37 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
用于非精确图匹配的改进注意图卷积网络
被引量:
6
2
作者
李昌华
刘艺
李智杰
机构
西安建筑科技大学信息与控制工程学院
出处
《小型微型计算机系统》
CSCD
北大核心
2021年第1期41-45,共5页
基金
国家自然科学基金项目(61373112,51878536)资助
陕西省自然科学基金项目(2020JQ-687)资助。
文摘
将传统图卷积网络模型应用于非精确图匹配时,在卷积步骤早期易存在节点特性以及节点之间拓扑特征的损失,从而影响导致匹配性能.针对这一问题,提出了改进注意图卷积网络模型.使用相对较少的参数以端到端的方式学习分层表示,利用自注意机制来区分应该丢弃或保留的节点.首先利用注意图卷积网络来自动学习不同跳上邻域的重要程度;其次,加入自注意池化层,从矩阵图嵌入的各个方面概括图表示;最后,在多个标准图数据集中进行训练和测试.实验结果表明,相较于目前最先进的图核和其他深度学习算法,该方法在标准图数据集上实现了更优的图分类性能.
关键词
节点邻域
图形拓扑
图匹配
自注意
图卷积网络
自注意
图
池化
Keywords
node neighborhood
graph topology
graph matching
attention graph convolutional network
self-attention graph pooling
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
弱标签声音事件检测的空间-通道特征表征与自注意池化
杨利平
侯振威
辜小花
郝峻永
《电子学报》
EI
CAS
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
2
用于非精确图匹配的改进注意图卷积网络
李昌华
刘艺
李智杰
《小型微型计算机系统》
CSCD
北大核心
2021
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部