针对现有基于图神经网络的会话推荐算法对用户主要兴趣偏好提取不充分的问题,提出了一种基于兴趣注意力网络的会话推荐算法(Session-Based Recommender Method Based on Interest Attention Network,SR-IAN)。首先,使用图神经网络捕获...针对现有基于图神经网络的会话推荐算法对用户主要兴趣偏好提取不充分的问题,提出了一种基于兴趣注意力网络的会话推荐算法(Session-Based Recommender Method Based on Interest Attention Network,SR-IAN)。首先,使用图神经网络捕获物品之间的上下文转换关系,得到物品的图嵌入向量;其次,将图嵌入向量输入兴趣注意力网络中,提取用户的主要兴趣偏好;然后通过注意力层对物品的图嵌入向量进行加权区分;最后,通过预测层得到候选物品的点击概率值并对其进行排序。算法模型在3个公开数据集Diginetica、Retailrocket和Tmall上进行了实验验证,相比基准模型在MRR@20指标上分别有0.942%、1.183%和2.977%的提升,同时降低了模型时间复杂度,验证了该方法的有效性和高效性。展开更多
完全个性化的新闻推荐工作通常只基于用户兴趣,可能会导致推荐结果与点击过的内容过于相似甚至重复.事实上即使一些热点新闻并不完全符合用户兴趣,用户也可能希望点击类似的新闻.目前基于热点的新闻推荐方法不能很好挖掘潜在新闻的热点...完全个性化的新闻推荐工作通常只基于用户兴趣,可能会导致推荐结果与点击过的内容过于相似甚至重复.事实上即使一些热点新闻并不完全符合用户兴趣,用户也可能希望点击类似的新闻.目前基于热点的新闻推荐方法不能很好挖掘潜在新闻的热点特征、灵活平衡用户兴趣和热点特征.本文提出一种新颖的注意力增强的热点感知新闻推荐模型(Hotspot-aware Attention enhaNced model,HAN),充分利用注意力网络和自注意力网络等深度神经网络的优势,在个性化推荐中将个性化兴趣与新闻热点性进行更好平衡与利用.该模型包括新闻编码器、热点特征提取器、用户兴趣提取器和点击预测器四个组件.提出一个热点特征提取器,使用注意力网络动态聚合热点新闻学习热点表示以更好挖掘热点特征;提出一个新颖的点击预测器来灵活融合热点特征、用户兴趣和候选新闻,以提升候选新闻的点击预测准确率.真实数据集上的实验表明HAN模型在AUC(Area Under the Curve of ROC)和F1两项指标上分别提升了7.51%和8.63%,且能够有效缓解用户冷启动问题.展开更多
文摘针对现有基于图神经网络的会话推荐算法对用户主要兴趣偏好提取不充分的问题,提出了一种基于兴趣注意力网络的会话推荐算法(Session-Based Recommender Method Based on Interest Attention Network,SR-IAN)。首先,使用图神经网络捕获物品之间的上下文转换关系,得到物品的图嵌入向量;其次,将图嵌入向量输入兴趣注意力网络中,提取用户的主要兴趣偏好;然后通过注意力层对物品的图嵌入向量进行加权区分;最后,通过预测层得到候选物品的点击概率值并对其进行排序。算法模型在3个公开数据集Diginetica、Retailrocket和Tmall上进行了实验验证,相比基准模型在MRR@20指标上分别有0.942%、1.183%和2.977%的提升,同时降低了模型时间复杂度,验证了该方法的有效性和高效性。
文摘完全个性化的新闻推荐工作通常只基于用户兴趣,可能会导致推荐结果与点击过的内容过于相似甚至重复.事实上即使一些热点新闻并不完全符合用户兴趣,用户也可能希望点击类似的新闻.目前基于热点的新闻推荐方法不能很好挖掘潜在新闻的热点特征、灵活平衡用户兴趣和热点特征.本文提出一种新颖的注意力增强的热点感知新闻推荐模型(Hotspot-aware Attention enhaNced model,HAN),充分利用注意力网络和自注意力网络等深度神经网络的优势,在个性化推荐中将个性化兴趣与新闻热点性进行更好平衡与利用.该模型包括新闻编码器、热点特征提取器、用户兴趣提取器和点击预测器四个组件.提出一个热点特征提取器,使用注意力网络动态聚合热点新闻学习热点表示以更好挖掘热点特征;提出一个新颖的点击预测器来灵活融合热点特征、用户兴趣和候选新闻,以提升候选新闻的点击预测准确率.真实数据集上的实验表明HAN模型在AUC(Area Under the Curve of ROC)和F1两项指标上分别提升了7.51%和8.63%,且能够有效缓解用户冷启动问题.