期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于BP神经网络的矿井提升机自校正容错PID控制 被引量:8
1
作者 郭星歌 吴娇娇 +1 位作者 刘静 孙莉 《工矿自动化》 北大核心 2013年第6期45-48,共4页
针对矿井提升机系统故障时动态性能难以用传统的解析方法获得的问题,提出了一种基于BP神经网络的矿井提升机自校正容错PID控制方法。该方法通过BP神经网络在线学习跟踪提升机系统的动态特性来预测系统输出值,并应用自适应控制中的自校正... 针对矿井提升机系统故障时动态性能难以用传统的解析方法获得的问题,提出了一种基于BP神经网络的矿井提升机自校正容错PID控制方法。该方法通过BP神经网络在线学习跟踪提升机系统的动态特性来预测系统输出值,并应用自适应控制中的自校正PID构建容错控制器,实现提升机系统故障下的稳定容错控制。仿真结果表明,该方法在提升机系统故障情况下能迅速跟踪系统故障状态,在线调整PID参数,快速恢复系统性能。 展开更多
关键词 矿井提升机 容错控制 自校正神经网络 PID控制 非线性系统
在线阅读 下载PDF
基于梅尔频谱分离和LSCNet的声学场景分类方法 被引量:7
2
作者 费鸿博 吴伟官 +1 位作者 李平 曹毅 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2022年第5期124-130,123,共8页
针对现有频谱分离方法进行声学场景分类研究时其分类准确率不高的问题,提出了一种基于梅尔频谱分离和长距离自校正卷积神经网络(long-distance self-calibration convolutional neural network,LSCNet)的声学场景分类方法。首先,介绍了... 针对现有频谱分离方法进行声学场景分类研究时其分类准确率不高的问题,提出了一种基于梅尔频谱分离和长距离自校正卷积神经网络(long-distance self-calibration convolutional neural network,LSCNet)的声学场景分类方法。首先,介绍了频谱的谐波打击源分离原理,提出了一种梅尔频谱分离算法,将梅尔频谱分离出谐波分量、打击源分量和残差分量;然后,结合自校正神经网络和残差增强机制,提出了一种长距离自校正卷积神经网络;该模型采用频域自校正算法以及长距离增强机制来保留特征图原始信息,通过残差增强机制和通道注意力增强机制加强了深层特征与浅层特征间的关联度,且结合多尺度特征融合模块,以进一步提取模型训练中输出层的有效信息,从而提高模型的分类准确率;最后,基于Urbansound8K和ESC-50数据集开展了声学场景分类实验。实验结果表明:梅尔频谱的残差分量能够针对性地减少背景噪音的影响,从而具有更好的分类性能,且LSCNet实现了对特征图中频域信息的关注,其最佳分类准确率分别达到90.1%和88%,验证了该方法的有效性。 展开更多
关键词 声学场景分类 梅尔频谱分离算法 长距离自校正卷积神经网络 频域自校正算法 多尺度特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部