期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度潜在特征表示的工业控制协议模糊测试方法
1
作者 连莲 孙世明 +4 位作者 王国刚 宁博伟 何戡 孙逸菲 宗学军 《计算机应用研究》 北大核心 2025年第2期545-554,共10页
工业控制协议(ICP)由于缺乏认证、授权和加密等安全措施,存在大量漏洞,对工业控制系统(ICS)的安全构成重大威胁。模糊测试作为一种主流的漏洞挖掘技术,在ICP中的应用存在测试用例接收率低和多样性不足的问题。为了解决这些问题,提高ICP... 工业控制协议(ICP)由于缺乏认证、授权和加密等安全措施,存在大量漏洞,对工业控制系统(ICS)的安全构成重大威胁。模糊测试作为一种主流的漏洞挖掘技术,在ICP中的应用存在测试用例接收率低和多样性不足的问题。为了解决这些问题,提高ICP漏洞挖掘效率,提出了基于多尺度潜在特征表示(multi-scale latent feature representation)的工业控制协议模糊测试方法。该方法将Transformer与生成对抗网络(GAN)在潜在空间中相结合,使用Transformer获取协议报文潜在特征的向量表示,并通过一个动态的多尺度判别器捕捉潜在表示序列中ICP不同尺度的语义信息,融合局部字段特征和全局语义特征,提升测试用例的接收率。此外,引入自对抗学习策略对生成对抗网络进行训练,降低潜在特征表示的冗余,增加测试用例的多样性。基于上述方法,设计了一个通用的ICP模糊测试框架MLFRFuzzer,采用S7comm、Ethernet/IP和Modbus/TCP三种ICP对其性能进行评估,实验结果表明MLFRFuzzer生成的测试用例接收率更高并且更具多样性,异常触发率相较于DCGANFuzzer、WGANFuzzer和PeachFuzzer分别提高23.76%、44.07%和71.96%,验证了MLFRFuzzer的有效性与普适性,与传统的ICP模糊测试方法相比,具有更强的漏洞挖掘能力。 展开更多
关键词 工业控制协议 潜在特征表示 动态多尺度判别器 TRANSFORMER 自对抗学习 模糊测试 漏洞挖掘
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
2
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部