期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于模糊对向网络的自学习控制器及其在喷焊中的应用 被引量:1
1
作者 谢辅洲 邵青 《哈尔滨工程大学学报》 EI CAS CSCD 2002年第4期114-117,共4页
为了解决用机械喷焊时熔池温度难以控制的问题 ,将模糊对向网络与自学习模糊控制的理论相结合 ,研制出了一种自学习模糊对向网络控制器 .通过自学习算法 ,控制器能获得足够的相关信息并能不断地优化控制性能 ,适用于非线性时变过程的控... 为了解决用机械喷焊时熔池温度难以控制的问题 ,将模糊对向网络与自学习模糊控制的理论相结合 ,研制出了一种自学习模糊对向网络控制器 .通过自学习算法 ,控制器能获得足够的相关信息并能不断地优化控制性能 ,适用于非线性时变过程的控制 .喷焊机工作时 ,用该控制器控制熔池温度 ,使熔池温度保持在设定的温度范围 ,获得了高质量的喷焊层 .喷焊工件 30 0mm长度 ,喷焊层厚度误差小于 0 .1mm . 展开更多
关键词 模糊对向网络 自学习控制器 温度控制 喷焊
在线阅读 下载PDF
一种新的CMAC自学习控制器
2
作者 薛云灿 简炜 《湖北汽车工业学院学报》 1999年第4期34-38,共5页
本文通过分析CMAC神经网络的学习机制和连续搅拌反应釜的结构,提出了一种自动选择学习率的CMAC自学习控制方法。给出了自学习控制器的结构和算法。并以连续搅拌反应釜模型为对象进行了仿真研究。这种网络每次学习少量参数,算... 本文通过分析CMAC神经网络的学习机制和连续搅拌反应釜的结构,提出了一种自动选择学习率的CMAC自学习控制方法。给出了自学习控制器的结构和算法。并以连续搅拌反应釜模型为对象进行了仿真研究。这种网络每次学习少量参数,算法简单。仿真结果表明所提出的控制器优于传统的PID控制器。 展开更多
关键词 CMAC网络 学习控制 自学习控制器 连续搅拌反应釜
在线阅读 下载PDF
多路自学习红外控制器的研制 被引量:3
3
作者 谭宝成 《西安工业学院学报》 2001年第4期297-299,共3页
介绍一种具有学习和识别各种红外遥控信号 ,并可复现原遥控信号的红外信号控制器 .并详细介绍了其红外信号特性、控制器硬件组成原理和软件编程思想 .该控制器在交互式远程控制系统中使用后证明其方便。
关键词 远程控制 红外遥控 信号编码 多路自学习红外控制器 电化教学系统
在线阅读 下载PDF
多变量模糊系统理论及应用研究 被引量:3
4
作者 秦勇 张锡第 贾利民 《中国铁道科学》 EI CAS CSCD 北大核心 2001年第6期131-134,共4页
Modeling, analysis and control of multivariable fuzzy system, an important direction of intelligent techniques, are to analyze and deal with complex MIMO dynamic systems. A complex multivariable system features nonlin... Modeling, analysis and control of multivariable fuzzy system, an important direction of intelligent techniques, are to analyze and deal with complex MIMO dynamic systems. A complex multivariable system features nonlinearity, uncertainty, multiple variables and couple action. It is difficult or even impossible to effectively deal with this kind of system with the existing conventional system and control theories based on classical logic. The theory of fuzzy sets and fuzzy systems open a new alternative way to modeling, analysis and control of such systems. But most developments are limited during the dealing with SISO systems in recent years. Therefore, the study on multivariable fuzzy system is of significance in respects of theory and application, and becomes one of the focuses on the research of the fuzzy logic techniques. In this dissertation, several conclusions about the multivariable fuzzy system theory have been achieved. The whole thesis includes two parts, and the main contents and conclusions are summarized as follows: In the first part, the theory about modeling, analysis and control of multivariable fuzzy systems is studied, including 1 The study on generalized fuzzy basis function based multivariable fuzzy system model By analyzing the existing modeling methods of multivariable fuzzy systems, enlightened by the fuzzy cell to cell mapping model proposed by L.M.Jia, a new analytical description of the MIMO fuzzy rules generalized fuzzy basis function (GFBF) is put forwards under the deterministic definition of the fuzzy cellization. It cannot only simultaneously the numerical data and linguistic knowledge of the complex systems, but also contains many kinds of fuzzy basis function according to the basic properties of GFBF. Consequently, generalized fuzzy basis function series (GFBFS), an efficient and concise modeling method for MIMO fuzzy systems, is proposed through the reasonable selection for the decision making logic used in the fuzzy inference mechanism, which can be proved to approximate arbitrary nonlinear functions to any degree of accuracy. Based on this model, an identification algorithm utilizing numerical data is provided and its convergence property is detailed studied. Furthermore, in order to improve the computational efficiency of the identification algorithm, a fast technique based on ρ cut equivalent system is put forward. The simulation results about typical system and practical industrial plant demonstrate its effectiveness. 2 The study on analysis of the dynamic properties of the MIMO fuzzy systems By reviewing the existing analyzing method of fuzzy systems, and based on the idea that the dynamics of any complex system is the aggregation of its implicit stable sub dynamics and unstable sub dynamics, system decomposition method is proposed to make the system properties easier to be recognized. Furthermore, the filtering operation is used to reasonable eliminate the less significant factors and make the dominant dynamics emerge. Then, the system behavior can be evaluated directly from the α cut equivalent system structure characterized by the cell to cell mapping. This provides a new approach to analyze the asymptotic response of the complex dynamic system. 3 The study on fuzzy sliding-mode based self learning multivariable fuzzy controller (FSM MFC) After a brief introduction to the state of arts of the researches on multivariable fuzzy controller (MFC), the limitation of indirect MFC based on the controlled system model is summarized. More and more researchers concentrate on the study of direct MFC and the general purposed model free MFC becomes the focus on the researches on fuzzy logic control theory and its application. Based on the method of sliding mode variable structure control (VSC) dealing with SISO and n the order systems, the concept of fuzzy sliding mode (FSM) is defined in the state space, and the performance of the closed loop system is significantly improved through the introduction to another control input. Meantime, by 展开更多
关键词 模糊控制系统 多变量模糊系统 广义模糊基函数 模糊滑模 自学习多变量模糊控制器 工业智能自动化系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部